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Abstract

Motivated by the demands of simulating flapping wings of Micro Air Vehicles, novel

numerical methods were developed and evaluated for the dynamic simulation of mem-

branes.

For linear membranes, a mixed-form time-continuous Galerkin method was em-

ployed using trilinear space-time elements. Rather than time-marching, the entire

space-time domain was discretized and solved simultaneously. Second-order rates

of convergence in both space and time were observed in numerical studies. Slight

high-frequency noise was filtered during post-processing.

For geometrically nonlinear membranes, the model incorporated two new schemes

that were independently developed and evaluated. Time marching was performed us-

ing quintic Hermite polynomials uniquely determined by end-point jerk constraints.

The single-step, implicit scheme was significantly more accurate than the most com-

mon Newmark schemes. For a simple harmonic oscillator, the scheme was found to be

symplectic, frequency-preserving, and conditionally stable. Time step size was lim-

ited by accuracy requirements rather than stability. The spatial discretization scheme

employed a staggered grid, grouping of nonlinear terms, and polygon shape functions

in a strong-form point collocation formulation. The observed rate of convergence was

two for both displacement and strain. Validation against existing experimental data

showed the method to be accurate until hyperelastic effects dominate.
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NOVEL DISCRETIZATION SCHEMES FOR THE NUMERICAL SIMULATION

OF MEMBRANE DYNAMICS

I. Introduction

The advent of the Micro Air Vehicle (MAV) has forced the scientific community

to focus on a familiar but extremely complex mechanism: the flapping wing. Well

suited for low-speed or even hovering flight, the flapping wing provides thrust, lift,

and control. It is typically highly flexible and non-uniform materially and geomet-

rically. Besides undergoing large and rapid rigid-body motion, it also experiences

large deformations. The true aeroelastic system is therefore highly nonlinear with

coupled structural and aerodynamic phenomena [27, 45]. The aerodynamics alone

have proved more difficult to model than those of a fixed wing [93].

Micro Air Vehicles often utilize flapping wings with membranes as the lifting sur-

faces. Structurally, a common flapping wing design consists of a main spar, stiffeners,

and a thin flexible membrane to serve as the lifting surface. Fabricated MAVs tend to

employ much simpler variations on the theme. The spar and stiffeners (often called

battens) have bending and torsional stiffness and can be considered to behave as

beam elements, leading to the current nomenclature “beam-membrane structure.”

They preserve the form and provide the forcing mechanism, while the membrane

provides the lightweight lifting surface.

As interest in flapping membrane-based wings intensifies, requirements for numer-

ical simulation will grow. Lessons learned from two-dimensional airfoil studies will

naturally progress to fully three-dimensional subjects for validation and application.

As the computational expense grows accordingly, demand will also rise for novel and
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efficient discretization schemes that retain or even improve sufficient solution accu-

racy. This forecasted need motivated the present research, drove its objectives, and

precisely defined its scope.

Background and Motivation

Compared to a rigid airfoil, a flexible membrane’s passive reactions to aerodynamic

loads can improve gust response [87] and stall characteristics [119]. Wind tunnel ex-

periments of a membrane stretched over a fixed frame have revealed the significance

of at least five vibration modes, with strong interactions between the membrane os-

cillations and vortex shedding [113]. Gordnier [45] performed high-fidelity numerical

simulations of a similar configuration and observed both standing and travelling wave

responses in the membrane depending upon the flow regime, leading him to conclude

that an advanced multidisciplinary approach was necessary to fully grasp the com-

plicated system.

Both air loads and inertial forces contribute to structural deformation. To exam-

ine their relative significance, Yin and Luo [143] defined the mass ratio m∗, which in

physical terms is the ratio of inertial force of the wing and the aerodynamic pressure.

They referred to an earlier study of the hawkmoth [27], where m∗ = 5 and deflections

were similar in a vacuum and in air, indicating that inertial forces dominate. In con-

trast, dragonfly wings are much lighter at m∗ = 1 and aerodynamic forces dominate.

Another study of the hawkmoth [121] showed a 23% difference in modal frequencies

between air and vacuum experiments, leading them to conclude some aerodynamic

coupling was present. Hawkmoth wings have been found to deform primarily due to

inertial forces, and damping could approximate the aerodynamic effects [27]. Clearly

the structural dynamics are a critical part of this complex system, and must be suit-

ably modeled to achieve a useful outcome.
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In nature, many insects [139] and bats [128] have beam-membrane wings. Because

they have mastered flight through evolutionary development, these living MAVs have

been the subject of many studies. Attempts to capitalize on their success despite

our limited knowledge have also led to many “bio-inspired” designs. One of the

most common subjects is the hawkmoth (Manduca sexta). Its relatively large size is

helpful because it enables detailed experimental studies [138], and evokes a suitable

size for fabricated, missionized vehicles with payloads. Its flapping mechanism –

forcing only at the shoulder with passive control through venation variations – avoids

the complex control mechanisms of actively-deformed wings like those in birds and

bats. Conventional structural analysis can therefore be performed on the wings. The

prevalence in the literature of the hawkmoth and the models it inspired motivates

this study to focus on membrane systems employed by this class of MAVs.

Research Goals

As the demand for higher-fidelity aeroelastic simulations of membrane-based wings

continues to grow, so will the need for practical structural models that are capable

of capturing the vitally important membrane dynamics. In anticipation of this need,

the purpose of this study was to devise and evaluate numerical schemes to accurately

simulate the dynamics of a membrane like those employed in typical Micro Air Ve-

hicle wings. Only the membrane component was addressed in this study because, as

mentioned previously, the complexity of an entire flapping wing system requires an in-

terdisciplinary approach. The numerical schemes developed here will be demonstrated

using fixed or prescribed frames only. Having thoroughly verified and validated the

results, future incorporation of the schemes into flapping beam-membrane structures

is a natural progression.

The scope and requirements for this study will now be delineated. The hyperbolic
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governing partial differential equations (PDEs) for a membrane are second order in

space and time (i.e., wave equations). All proposed schemes were to be capable of

simulating the transient response of a membrane, including standing and travelling

waves. Modal analysis was therefore expressly excluded – if needed, modal frequencies

could be extracted from the time series information of the transient response. Accu-

racy was to meet or exceed that of commonly-used numerical computation methods.

Capability requirements and scope of suitability for the new numerical schemes

were derived from the characteristics of the physical system under consideration: a

fabricated (as opposed to biological) structure consisting of a thin, isotropic membrane

stretched across a rigid frame. Selecting this system enabled the design to focus on

a narrow but useful design space. The model was therefore customized for systems

abiding by the following assumptions:

• Geometry

– Large deformation/small strain (at least geometrically nonlinear)

– Variable geometry (not restricted to circle, square, etc.)

– Membranes must be planar when at rest

• Membrane properties

– Isotropic

– Buckling and wrinkling were neglected

– Linear elastic material model

– Poisson ratio ν: 0 to 0.5 (hawkmoth approximation ν = 0.49 [27])

– Membrane at rest may be slack or prestressed

– Clamped at all boundaries (Dirichlet boundary conditions only)

4



• Forcing functions

– All external and body forces are distributed and smooth (discontinuous

point forces not expected)

– Directional forces (tractions or body forces like gravity)

– Follower forces

– Tightly-coupled aerodynamic forces that respond to the membrane shape

– Time-dependent forces

• Frame

– Prescribed motion only. Incorporation of a coupled beam model for the

rigid frames was beyond the scope of this study.

The performance of the proposed techniques was assessed through a rigorous pro-

gression of verification and validation. As precisely defined in Ref. [112], the veri-

fication process ensures that a model is solving the chosen equations correctly and

consistently. After code has been verified, validation addresses whether the proper

equations were selected for approximating the physical system under consideration.

Experimental data therefore plays a key role in validation.

A wide variety of methods for building a simulation that meets the listed require-

ments are available, and many of them will be discussed in the literature review in

Chapter Two. For two-dimensional membranes of arbitrary geometry, the Galerkin

finite element method (FEM) is the predominant approach. The most commonly as-

sociated time integration scheme is the Newmark family of methods, favored mostly

for the unconditional stability of its implicit average acceleration scheme. Because

of the Galerkin formulation’s numerical integration procedures, the computational

expense of this approach for nonlinear dynamic problems is significant. In addition,
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for highly nonlinear problems, the stability benefits of the implicit Newmark methods

are degraded.

The narrowed design space for this study, however, provided the opportunity

to develop new methods tailored to the requirements. Hence, novel schemes for

both time and space discretization were created, evaluated, and incorporated into

a final membrane model. In particular, a time-marching scheme based on Hermite

polynomial interpolation was developed that is significantly more accurate than the

second-order Newmark methods, yet it is stable at time step sizes appropriate for

capturing the relevant dynamics. Likewise, a spatial discretization scheme based

on the point collocation method was devised that handles the geometric nonlinear

membrane behavior while avoiding the requirement for numerical integration. When

put together, these two schemes provided a practical, robust model for the dynamic

simulation of geometric membranes.

Organization

Thus far the motivating systems and the scope of the study have been outlined.

The remainder of the dissertation will detail the individual components of the model

and finally evaluate the complete membrane model. The literature review will be

conducted in Chapter Two to frame the new methods in the context of conventional

approaches. Chapter Three details the development and evaluation of the Simulta-

neous Time-Continuous Galerkin (STCG) method for a linear membrane. Chapter

Four progresses to fully nonlinear membranes. The jerk-based constraint formulation

for Hermite time interpolation is proposed and evaluated, followed by a similar devel-

opment of the staggered-grid point collocation model. Having rigorously examined

these two schemes individually, they are finally incorporated into the final membrane

model for analysis. Lastly, in Chapter Five, results will be summarized and discussed
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from the perspective of the study objectives. Recommendations for further study will

also be offered.
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II. Literature Review

What exactly is a membrane? Jenkins provides excellent definitions depending

on one’s perspective: a membrane is a structure that does not resist bending, while

a membrane model is “an idealized model of a plate or a shell structure, wherein the

in-plane response dominates away from domain and load boundaries.” [63]. With its

total lack of bending stiffness, a membrane may be thought of as a two-dimensional

version of a string or cable [95]. When subjected to an external load, the only restoring

force is from the tension in the plane of the membrane. Membranes are inherently

nonlinear structures that may undergo large rigid body displacements and rotations,

and often large strains as well. Thorough discussions of membrane mechanics and

challenges may be found in [64], [63], [96], and [95].

The prototypical problem for static membrane study is the circular membrane

with fixed circumference that is inflated under constant pressure. Commonly called

the Hencky problem [51], this configuration facilitates experimentation and analytical

solutions. Finite element (FE) models have been applied to the Hencky problem that

use detailed geometric surface descriptions with Jaumann strains and stresses [96].

Another approach is to use simple linear-elastic elements applicable to the large dis-

placement/small strain regime [97].

Despite the intrinsic nonlinearity of true membranes, simplifying assumptions may

be appropriate for some applications. Based on these possible assumptions, a mem-

brane model can be classified as “linear,” “small strain/finite rotation,” or “fully

nonlinear” based on how (or whether) it handles the geometric and material non-

linearities [64]. Stanford et al. [125] referred to these three categories as “low-”,

“medium-”, and “high-fidelity.”
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• Linear (Low fidelity). This model is the simplest, but carries the most stringent

assumptions. The material is linear elastic. Initial membrane internal forces

(pre-tension) are significantly greater than any change in internal forces caused

by deformations. External loads are not affected by the membrane’s shape.

Only transverse displacements, w, are permitted, and the displacements are

small. The linear model may be appropriate only in cases with small pressures,

small displacements, and large initial tensions [126, 125]. The linear model is

invalid (unbounded) for a slack membrane [125]. Further, it has been found

that a circular membrane that is planar when undeformed cannot be linearized,

no matter how small the displacements [88].

• Small strain/finite rotation (Medium fidelity). Also called a “geometrically

nonlinear” model. In this case, the membrane’s resistance to an increase in

transverse load (a force normal to the plane of the membrane) depends on the

current shape of the membrane. For example, if the membrane is flat, the

membrane offers no resistance when a load is applied. On the other hand, if

the membrane is deformed out-of-plane, the surface is sloped such that tension

forces are able to resist further deformation when the load is incremented. This

phenomenon occurs even though the material is considered to be linear elastic.

• Fully nonlinear(High fidelity). In a fully nonlinear model, both material and

geometric nonlinearities are accommodated. Often, the material is considered to

be hyperelastic – the strain energy depends on both the initial and the deformed

state, but is not dependent on the path between those states [15].

Geometrically nonlinear models have been shown to be suitable until hyperelastic

effects begin to dominate. For an initially flat, circular, rubber membrane with a

clamped circumference, this transition occurs at a center deflection of approximately
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25% of the membrane’s radius [106]. Since this degree of deformation was consid-

ered unlikely for typical Micro Air Vehicle wings, the fully nonlinear model was not

considered in this study.

With the fundamental characteristics of membranes in mind, the rest of this chap-

ter reviews numerous approaches for modeling a membrane. Broadly speaking, they

can be categorized as analytical or numerical. Methods for handling the temporal

dimension in a numerical scheme are also discussed.

Analytical Models

Analytical solutions for membranes are restricted to special subcases where forcing

functions, initial conditions, and boundary conditions are tractable. As a result,

configurations are typically rectangular for Cartesian coordinates, or circular for polar

coordinates or to capitalize on radial symmetry.

The linear membrane model is most amenable to analytical treatment, and is

therefore most prevalent in the historical and canonical literature [91, 136, 46, 108,

133]. The governing equations may be obtained by either a variational approach

using energy formulations and Hamilton’s Principle, or a Newtonian force equilibrium

approach. The membrane’s surface is defined by the displacement w(x, y, t) of a

particle (x, y) in the z direction. Letting ρ̄ be the membrane’s constant density (mass

per unit area), P be the constant tension (force per unit length), and f(x, y, t) be

the external pressure in the same direction as w (force per unit area), the well-known

second-order PDE is

ρ̄
∂2w

∂t2
= P∇2w + f (1)

with the Laplacian operator defined as

∇2 ≡ ∂2

∂x2
+

∂2

∂y2
(2)
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The wave speed c, where c =
√
P/ρ̄, is variously called the the characteristic velocity,

the speed of sound for the material [28], or the solution propagation speed [58]. For

the static case, the Poisson equation is recovered. If shear forces are included, the

internal forces are represented by Nx, Ny, and Nxy, and the static version of Eq. 1

may be presented as [125]

Nx
∂2w

∂x2
+Nxy

∂2w

∂x∂y
+Ny

∂2w

∂y2
+ f = 0 (3)

Exploiting the radial symmetry of circular membranes permits a two-dimensional de-

velopment to solve a three-dimensional problem. The complementary energy principle

has been used to derive a fully nonlinear model for predicting large deformations [88].

Likewise, equilibrium principles have been employed with assumed functions for the

dependent variables; the solution is obtained after solving for the constant coefficients

multiplying the assumed functions [35].

The perturbation method has also been effective for membrane analysis. A per-

turbation method of the pressure term has been used to analyze a small strain/finite

rotation circular membrane. The numerical solution was obtained through a Taylor

expansion of the analytical solutions to differential equations [127]. A perturbation

of the external force to the same problem has also yielded accurate results [32]. For

the dynamic case, the vibrations of a large-displacement nonlinear square membrane

were accurately modeled by using the perturbation method to derive simplified ap-

proximate governing equations [25].

Numerical Models

The simplifying assumptions required by analytical approaches are quickly vio-

lated when more complex systems are considered. The inclusion of arbitrary domain
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geometry or interactive external forces, for example, require a numerical approach

to approximate the solution. The three primary approaches are finite differences

(FD), finite volume (FV), and finite element analysis (FEA) [74]. Although all three

approaches can be universally applied to approximate the solutions to differential

equations, there are strengths and weaknesses associated with each. As a result, the

first two approaches are generally employed by the fluid dynamics and heat transfer

communities, and FEA is heavily favored by structural analysts. For this reason,

this dissertation will focus primarily on FEA. However, certain applications of one

method can lead to similarities (if not overlap) with another, so we should resist the

tendency to pigeonhole methods to one application or another.

The computational expense of a particular model is affected largely by the phe-

nomena the analyst wishes to include. Thus, one should strive to use the most efficient

path that produces answers of sufficient accuracy. In one extreme, rigid plates have

been used for kinematic optimization, where the minimizing computational effort was

paramount [13]. This is the exceptional case, however – estimates of aerodynamic

power, work, thrust are commonly sought and require a non-rigid body to capture

the physics. The numerical simulation of a flexible, dynamic, nonlinear structure is

a challenging endeavour, and following sections will review available methods.

Classical Mechanics and Hamiltonian Systems.

Classical mechanics form the mathematical basis for the variational development

of finite element models and spring-mass models. A brief review will be presented here

as a foundation for later developments. As opposed to the force-oriented Newtonian

mechanics, classical mechanics apply variational calculus to scalar energy functionals

to determine the optimal solution of a system. The classical Lagrangian formulation

is well known [42, 78, 44], and leads to Hamilton’s canonical equations. More recently,

12



direct solutions have been obtained using Hamilton’s Weak Principle, which is derived

from Hamilton’s Law of Varying Action (HLVA) [80]. Both of these approaches

have been utilized to derive numerical methods for approximating the behavior of

Hamiltonian systems.

The Lagrangian L of a mechanical system is defined as the difference between the

system’s kinetic energy T and potential energy U . Let q be the vector of generalized

coordinates according to the Cartesian position X and time t. Then

L(t, q, q̇) = T (q̇)− U(q) (4)

The physical path of the system from time t0 to time t1 satisfies the Extended Hamil-

ton’s Principle [118, 108],

δ

∫ t1

t0

Ldt+

∫ t1

t0

δWdt = 0 (5)

To transform the formulation from Lagrangian to Hamiltonian, we next define the

generalized momenta p of the generalized coordinates:

pi =
∂L

∂qi
(6)

The Hamiltonian H is then defined as

H =
n∑
j=1

q̇jpj − L (7)

and with our formulation of T it can be proved that H(q, p) = T (p) + U(q). Substi-
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tution into the functional I gives the equation in terms of the Hamiltonian:

I =

∫ t1

t0

(
n∑
j=1

q̇jpj −H
)
dt (8)

Finding the extremum of this functional, one obtains the Hamilton equations of mo-

tion (also called the“canonical equations of Hamilton” [78]).

q̇i =
H(q, p)

pi
, ṗi = −H(q, p)

qi
(9)

For direct numerical application, the configuration state vector η is defined to contain

the coordinates q and momenta p,

η =

 {q}{p}
 (10)

leaving H as a function only of η. The partial derivatives of H with respect to η are

∂H(η)

∂η
=



∂H/∂q1

. . .

∂H/∂qN

∂H/∂p1

. . .

∂H/∂pN



(11)

The canonical equations can then be put into matrix form, which is more amenable

to numerical implementation.

η̇ =

 0 I

−I 0

 ∂H(η)

∂η
(12)
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The block matrix is often labeled J (not to be confused with a Jacobian matrix),

resulting in the form [44]

η̇ = J
∂H(η)

∂η
(13)

With simple difference equations, this form can easily be turned into a midpoint value

integration scheme [22, 80],

η1 − η0

∆t
= J

∂H(η0+η1
2

)

∂η
(14)

The second approach, direct solution based on Hamilton’s Weak Principle (HWP),

retains boundary terms in Hamilton’s Law of Varying Action that are neglected in

Hamilton’s Principle [7]. By honoring these terms, the energy balance through a

time step is preserved. The weak form captures all of the boundary conditions in a

single functional and reduces the interpolation order requirements. Constant shape

functions may be permissible, leading naturally to discontinuous Galerkin formula-

tions where the integration can be performed by inspection [4, 80]. In fact, weak

Galerkin formulations and HWP result in equivalent schemes [18]. Representing non-

conservative generalized forces as Q, Hamilton’s Weak Principle as developed in [80]

is

∫ t1

t0

(
n∑
j=1

pjδq̇j −
n∑
j=1

qjδṗj − δH +
n∑
j=1

Qjδqj

)
dt−

n∑
j=1

pjδqj|t1t0 +
n∑
j=1

qjδpj|t1t0 = 0

(15)

Statements of HWP may also be found in [18, 16, 56, 57].

Spring-Mass Models.

Spring-mass models of a membrane discretize a continuum into a system of in-

terconnected particles. Movement of the particles determines the kinetic energy of

15



the system. Mass lumping at the particles is intrinsic (the consistent mass treat-

ment of FEM is not an option) and the rotational momentum about points between

the particles is ignored. However, for most problems and with small elements, the

rotational inertia is insignificant relative to the translational inertia [134]. Massless

springs connect particles and house the potential energy. The model intrinsically han-

dles geometric nonlinearities and (through the spring model) material nonlinearity.

Systems can range from a simple harmonic oscillator to a cloth blanket draped over

a table. Spring mesh models offer the advantages of simplicity and computational

speed [132]. These factors make them popular in the field of animation, where they

have found the most use and development [73]. One must be aware, though, that

in this milieu realistic-looking results may be the objective rather than physically

accurate ones [72]. Despite this caution, the field offers interesting alternatives to

traditional techniques in solid mechanics.

One study [73] deemed spring-mass models to be superior to traditional FE for-

mulations for purely axial structures undergoing large displacements, in particular

the hanging chain or net. Algorithm details were not presented other than stating

that Runge-Kutta time integration was used. Demonstrations of three-dimensional

static problems showed the technique to be promising but with some limitations (in

particular, computational expense and potential instability in complex problems).

According to Gelder, as of 1998 little work had been done to compare results

of spring mesh models with those of traditional finite element models [132]. He

evaluated the capability of a spring mesh model to model an isotropic linearly elastic

membrane undergoing in-plane deformations. All simulations were static analyses.

He compared the stiffness matrices of the spring mesh model and the constant strain

model to prove the spring mesh cannot exactly match the constant strain model

when the springs have the same stiffness. In particular, the spring model does not
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include the Poisson effects. Based on the geometry of an element and the desired

edge stresses, he modified the spring stiffness coefficients to more closely match the

constant strain triangle model. Exact solution was still not possible.

Delingette [31] rigorously developed objects called “triangular biquadratic springs”

in such a way that the membrane strain energy was exactly that of an equivalent con-

tinuum model. On an unstructured triangular mesh, these springs effectively modeled

static non-linear membrane deformations. As contrasted with previous efforts, this

study included an angular stiffness to the springs. This mechanism enabled inclusion

of the Poisson effect.

Finite Element Models.

The predominant numerical method for membrane simulation is the finite element

method (FEM). For MAV applications, different approaches have included distinct

beam and shell elements [90, 34], membrane elements with varying parameters [86],

or plate elements with bending stiffness set to near zero for membrane portions of the

structure [124].

In FEA, membranes are commonly considered subcases of shells [95] and element

development follows that train of thought. However, the nature of a membrane struc-

ture (light weight, minimal thickness, large displacements and rotations, etc.) causes

unique problems for conventional FEA. While most production codes have membrane

elements incorporated, their accuracy may be questionable for some cases; in partic-

ular, complex phenomena such as wrinkling may not be accurately predicted [95]. As

a result, attempts have been made to custom tailor elements to this problem.

Pauletti [97] refined a membrane element designed specifically for geometrically

nonlinear membranes. The original element is called “Argyris’s Natural Membrane

Finite Element” and is based on the constant strain triangle. The model splits the
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element stiffness matrix into three components that capture geometric nonlinearities,

constitutive relationships, and external load effects separately. The membrane is as-

sumed to be linearly elastic. Comparisons to benchmark cases demonstrated good

performance. The linear membrane displayed limited accuracy under large deforma-

tions. Leung [83] developed trapezoidal finite elements using trigonometric shape

functions instead of polynomials. Modal frequencies were obtained more accurately

than with the conventional polynomial approach, and with greater conditioning and

stability.

Clearly there is no consensus about how to tackle membranes in FEA, and special

care must be taken to capture the unique behavior of a particular membrane problem.

Point Collocation and Group Finite Element Methods.

The model developed here will utilize two approaches which are relatively rare

in structural FEM applications: the point collocation method and the group finite

element (FE) formulation. Both approaches were selected for this effort because they

tend to result in simpler formulations [26, 146], potentially offering greater code flexi-

bility without sacrificing accuracy. Coincidentally, both the point collocation method

and group FE formulation have close ties with the development of computational fluid

dynamics (CFD) schemes. Development of the group FE formulation in the litera-

ture centers around fluid mechanics applications and examples [26, 37, 38], and the

similar lumping of nonlinear terms in the flux vector is standard practice for finite

volume formulations [55]. Similarly, the point collocation method shares a history

with and bears a resemblance to the finite difference method [146]. The nonlinear

wave equations that describe membrane dynamics offer an interesting test case for fur-

ther examining how well these CFD-associated techniques transfer into the structural

dynamics milieu.
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The collocation method is commonly mentioned in the finite element literature

when listing the members of the Method of Weighted Residuals family. However, it

is rarely seen in practice. The weighting function for each designated point in the

domain is the Dirac delta function. By definition, the Dirac delta function equals zero

everywhere except at its associated point, and its integral over the domain equals

one [146]. The resulting system of equations solve the PDE (Partial Differential

Equation) point-wise rather than in an integral sense. Thus, there is no need for

Gaussian integration over an element. Posed in the strong form, the method requires

the interpolation scheme to be differentiable to the same order as the PDE [146, 1],

but the formulation of the system of equations has been found to be less complicated

than when employing the Galerkin method [1].

Also, while certainly applicable to a conventional FEM mesh, the point collo-

cation method lends itself to a variety of unconventional discretization and inter-

polation schemes. Element shapes can expand beyond triangles and quadrilater-

als to n-sided polygons. Taking the concept even further, “meshless” [10, 61] and

“element-free” [11, 76] methods use least-squares fits, radial basis functions, or other

neighboring-node-based techniques for forming the system of equations. Using a

meshless point collocation method, [1] solves a wide variety of problems including

heat conduction, Couette flow, and a cantilever beam. In the interest of computa-

tional efficiency for the dynamic simulation, the present model utilizes a staggered

background mesh so it does not fall into the meshless category.

In a group finite element formulation (also called “product approximation” [26]),

aggregated nonlinear terms are first computed, then interpolated as a single degree of

freedom. Consider the term ρuv where ρ, u, and v are each dependent variables [38].

Rather than applying trial solutions φj to each of the variables, the group formulation

interpolates their precomputed products as
∑
φj (ρuv)j. Significant computational
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savings have been observed, with the benefits increasing from higher dimensionality or

order of nonlinearity [37]. For some cases, point-wise accuracy may actually be higher

than that of the Bubnov-Galerkin method [26]. This observation hints at a potential

synergy in the pairing of the group FE formulation with the point collocation method.

Time Integration Methods

Numerical approximation of initial value problems (IVP), also aptly called evolu-

tionary differential equations [3], has been studied for centuries, with Euler’s foun-

dational work coming in the 18th Century. Despite its rich history, the challenge of

balancing stability and accuracy continues to invite further consideration, especially

as computational models are applied to progressively more complex systems.

A primary source of problems for evolutionary equations is the propagation and

build-up of errors. Hence, dissipation of unwanted high-frequency content is desired.

Ideally it is achieved through the formulation of the predictive algorithm, often em-

ploying parameters to tailor the behavior [54]. In some circumstances, this dissipative

behavior may be necessary because noise can significantly affect extrapolated predic-

tions and result in instability [58]. Spurious high-frequency oscillations have long

been documented for Galerkin solutions of the wave equation [92] and the shallow

water wave equations [5, 39]. The time-discontinuous Galerkin (TDG) method offers

additional flexibility through the flux resolution to control dissipation [53]; upwind-

ing techniques for the jump operators in particular have proven effective in improving

stability [59, 16].

Structural dynamics formulations spring from the equilibrium equation

Mü + Cu̇ + Ku + F = 0 (16)
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where u is the solution vector, M, C, and K are the mass, damping, and stiffness

matrices respectively, and F is the external force vector.

The most common time integration technique in FEM is direct integration. The

direct integration approach splits the domain into two parts: a spatial component

to be addressed with a finite element approximation and a time-marching predictor

algorithm. The FEA is a static solution where for linear systems the forces exerted

by the structure are a function of the structure’s current configuration. Given appro-

priate initial conditions, external forces, and the internal forces from the FEA, the

time-marching algorithm predicts the configuration at the end of a time increment.

That solution then provides the initial conditions for the next time step, and so on.

Much effort has gone into developing algorithms that balance the often contradictory

demands placed upon them. Numerous families of algorithms have been developed,

including the single-step direct integration methods that are either explicit (such as

the Euler and central difference methods) or implicit (Newmark, Wilson, etc.). These

procedures produce at best second-order accuracy [58]. Explicit methods are more

economical at each step, but they are conditionally stable and typically require more

steps. Implicit methods require more expensive calculations but can be formulated

to be unconditionally stable, enabling larger time steps.

Besides stability limits, the time step size for nonlinear systems is limited by

other factors. A chaotic system may force strict accuracy requirements to minimize

the propagation of numerical perturbations. For implicit schemes, iterations may not

converge if the step size is so large that a sufficiently good initial guess cannot be made.

These requirements may limit step size to the point that conditionally stable schemes

become feasible. From these considerations arose the goal of implementing a method

that offers higher accuracy than the predominant Newmark methods. Effective han-

dling of nonlinearities, conservation of energy, improved frequency preservation, and
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useful error estimation for step size or damping control were additional objectives.

In the context of structural finite element analysis, the conventional approach for

marching this type of model through time is to use one of the members of the well-

documented Newmark family [58, 68, 28]. All of the Newmark methods are single-step

methods that are distinguished by the values chosen for two parameters, β and γ.

The two most commonly used methods are the explicit, conditionally stable central

difference method and the implicit, unconditionally stable trapezoidal rule (also called

the average acceleration method). Both methods are second-order accurate in time.

Unconditional stability is generally attractive for structural applications—despite the

presence of high-frequency content or numerical noise, large time steps can be taken

while preserving the accuracy of the relevant low-frequency modes. It should be

noted that unconditional stability is no longer guaranteed for non-linear problems

and the order of the methods may drop to one in the presence of damping [28].

Despite the popularity of the Newmark methods in structural analysis, other time

integration techniques such as the Runge-Kutta method and space-time finite element

formulations have been successfully applied, showing there is room for alternatives.

The Runge-Kutta technique is a multi-step method that is most commonly ap-

plied in Computational Fluid Dynamics or Multi-Body Dynamics. As an explicit

procedure, it is computationally efficient and the myriad of schemes provide many

alternatives in the tradeoff between accuracy and speed. Runge-Kutta methods are

well-known and covered extensively from numerous viewpoints, including differential

equations [48, 142], numerical methods [71, 77, 3, 103, 117], and computational fluid

dynamics (CFD) [14, 55]. Examples of its application with conventional FEA are

few [94, 107]. However, the Runge-Kutta method is commonly employed along with

the Discontinuous Galerkin Method [85, 53]. The Runge-Kutta method discretizes

the first-order differential equation in time to generate explicit functions for slope in
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the form ∆U/∆t = H(U). The slope is calculated at optimized points within the

time step. Weighting coefficients refine the final prediction of U at the end of the

time step.

Symplectic Methods.

The symplectic methods, also called geometric or variational integrators, retain

the relationship between the generalized coordinates q and their generalized velocities

or momenta p. Thus the flow or mapping of the system from an initial point (q, p)0 to

its future configuration (q, p)1 should preserve the area of a given set of points as they

move from t = t0 to t = t1 [48]. In a discretized Hamiltonian system the coordinates

and momenta are related to the Hamiltonian as ∆p/∆t = −∆H(q, p, t)/∆q and

∆q/∆t = ∆H(q, p, t)/∆p. Often in mechanics the potential energy is a function

only of position (U = U(q)) and the kinetic energy is a function only of velocity

(T = T (p)). A variational integrator iterates between q and p across multiple stages

to achieve a prediction for the future configuration vectors q and p. Because the

relationship between q and p is largely preserved, symplectic integration has been

shown to more effectively conserve a system’s energy over time. This feature is of

utmost importance during long-duration simulations where small rates of energy gain

or loss result in substantial errors at the end.

For a thorough treatment of symplectic integration, refer to [48, 137, 84]. Also, a

seminal work in the field of symplectic integration is that of Yoshida [144]. Yoshida

developed a rigorous method for deriving exact coefficients for high order integrators.

Symplectic integration has been successfully integrated into FE models of beam

vibration. Leung and Mao [82] demonstrated the use of a symplectic algorithm in

the FEA of non-linear vibrations of a beam and recommended it for use in plates and

shells. They separated the kinetic and potential energy equations to utilize the mid-
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point symplectic technique [22], which they called the “time-centered Euler scheme.”

Dash et al. [30] used Yoshida’s 8th order scheme and observed good results but marked

instability above a critical ∆t. Note that some of the other methods, such as the

Newmark and certain Runge-Kutta formulations, can be shown to be symplectic [68,

84, 137]. Hughes mathematically proved that for an unforced undamped response the

Newmark trapezoidal rule exactly conserves the total energy of a system [58].

The fact that a method is symplectic does not necessarily guarantee increased

performance or suitability for a given problem. Energy preservation may indeed be

counter to a need for algorithmic dissipation. Thus, in this research, symplecity will

be examined to gain further understanding of proposed methods, but will not be a

basis for their formulation or an objective to be pursued.

Space-Time Finite Elements.

Space-time finite element formulations have been seen as a viable alternative to

direct integration for several decades [9, 17, 100]. In this method, the elements span

not only space but also a discrete time increment. The most frequently encountered

space-time finite element technique is the time-discontinuous Galerkin (frequently

abbreviated as TDG [62]) method. In the discontinuous Galerkin method, element

shape functions produce different values of the field variable at their interfaces; flux

schemes are then employed to resolve the ambiguity. High-order shape functions using

a variety of basis types are permitted. For example, in a wave problem, basis functions

that are themselves solutions to the wave equation have provided great accuracy while

minimizing computational cost [101]. In a different but equally effective approach,

Hamilton’s Weak Principle has been applied to develop simple elements with constant

and linear shape functions. The integration could be performed by inspection, and

led to a system of algebraic equations for solving a variety of nonlinear dynamic

24



problems [4, 56].

Implementation of space-time FEA in all of the aforementioned studies involved

obtaining the solution for one slab of elements at a time, where a slab is defined as

the set of elements in a given time increment t0 to t1 = t0 + ∆t. The nodal values at

t1 were then used as initial conditions for the following time increment. In contrast,

the method employed during this research for modeling linear membranes solved the

entire space-time domain simultaneously.

Hermite Time Interpolation.

An alternative time integration method was developed for this study: Hermite

polynomial interpolation. A unique form of collocation, this scheme uses derivatives

at the end points to provide the necessary number of equations rather than additional

interior points [81]. A common example of Hermite polynomials in finite element anal-

ysis can be found in simple beam elements, where displacements and rotations at the

ends of the beam define the cubic polynomial shape functions [107, 28]. Higher-order

Hermite interpolations are possible, but they demand additional end point function

derivatives, interior nodes, or some other means of providing enough constraints to

define a unique solution.

For initial value problems in general, a wide variety of time-marching methods are

defined by the selection of a polynomial interpolant and a corresponding numerical

integration scheme. These include linear multi-step methods and single-step colloca-

tion methods like the implicit Runge-Kutta methods [48, 3]. The ubiquitous implicit

midpoint rule also falls under this category [116]. These methods rely on internal

collocation points for their definition. In contrast, Hermite polynomials can be cast

in a two-point form, so the interpolation is defined by the function value and its

derivatives at the end points only. The term “prolongation” has been used to refer to
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the use of additional derivatives at the end points to provide the necessary number of

equations rather than additional interior points [81]. A common example of Hermite

polynomials in finite element analysis can be found in simple beam elements, where

cubic shape functions are uniquely defined by the displacements and rotations at the

ends of the beam [107, 28]. Higher-order interpolations are possible, but they demand

additional end point function derivatives. One can also obtain a solution by replacing

one of the derivatives by a time integral constraint, called an eliminant [77].

Previous results using Hermite time interpolation have shown excellent accuracy

relative to the central difference and trapezoid methods. Leok et al. [81] used quintic

interpolation polynomials in their prolongation-collocation method. The variational

integrators were derived by applying Euler-Maclaurin quadrature to the Lagrangian

formulation. It was mathematically proven that a quintic polynomial with the applied

method provided at least fourth-order convergence, which was further confirmed by

numerical experiments. The experiments also showed that energy was conserved

despite structured, bounded fluctuations, as expected for a variational integrator.

Stability was not addressed.

Quartic Hermite time interpolation was applied in the structural dynamics con-

text by Razavi et al. [109] and compared to members of the Newmark family. The

derivation assumed constant mass, damping, and stiffness matrices, so it applied

only to linear systems. The external load was assumed to vary linearly within the

time step. The unique solution was defined by satisfaction of equilibrium equation

at the beginning of the time step, at the end of the time step, and on average over

the time step (i.e., the time integral of the residual vanishes). The method was

labeled a weighted residual method due to the use of the residual equation as an

eliminant. Numerical experiments using a linear, unforced oscillator corroborated

the fourth-order convergence rate of [81]. The response also showed no dissipation
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and minimal period distortion. Two regions of instability were stated in approximate

terms: 0.51 < ∆t/T < 0.55 and ∆t/T > 1.24, where the dimensionless sampling

frequency ∆t/T is the time step size divided by the signal’s period T .

Summary

In this chapter, the unique characteristics of membranes have been introduced,

and numerous techniques for predicting their behavior have been summarized. The

discussion illustrates why certain techniques were selected for the current research.

For example, spring-mass models were rejected because they clearly have significant

difficulty representing continuous structures. The linear membrane model enabled

investigation of the simultaneous time-continuous Galerkin technique because it re-

quired fewer degrees of freedom than a nonlinear model, a key consideration because

the method produces an extremely large linear system to solve. Likewise, the dis-

continuous Galerkin method was rejected because it increases the number of degrees

of freedom. For the nonlinear membrane model, the point collocation spatial dis-

cretization combined with the group FE formulation potentially provided simplicity,

efficiency, and accuracy. The Hermite time interpolation method was anticipated

to offer higher accuracy with acceptable stability limits. Combining point colloca-

tion and Hermite interpolation into a dynamic membrane model results in a purely

collocation-based scheme, a unique and promising formulation for a membrane prob-

lem.
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III. Linear Analysis of Membrane Dynamics

This chapter details the development of a space-time finite element (FE) model

to simulate a linear membrane. Space-time FE formulations of non-periodic systems

typically utilize a time-marching algorithm. The solution is obtained for one slab of

elements, where a slab is defined as the set of elements in a given time increment t0

to t1 = t0 + ∆t. The nodal values at t1 are then used as initial conditions for the

following time increment.

The goal of this portion of the research was to investigate a space-time FE method

simultaneously discretized and solved across the entire space-time domain. This ap-

proach results in extremely large linear systems. Because the discontinuous Galerkin

methods with low-order interpolations require more degrees of freedom for the same

mesh [145], continuous interpolation functions in both space and time (trilinear el-

ements) are employed. Thus, using the terminology of [62], it is labeled a time-

continuous Galerkin (TCG) method. Further, the proposed approach will be referred

to as the simultaneous time-continuous Galerkin (STCG) method to distinguish it

from time-marching methods.

After deriving the governing equations for a mixed formulation, stability will be

examined through numerical experimentation, and static and dynamic verification

will be used to assess the accuracy of the scheme.

Membrane Model

The linear membrane model described in Section II is employed, which classically

leads to the linear, second-order PDE of Eq. 1. With displacement w(x, y, t), specific

density ρ̄(x, y), and tension per unit length P (x, y), the kinetic energy density (the

kinetic energy per unit area, or over the infinitesimal spatial area dΩ where Ω is the
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spatial domain) is

TdΩ =
1

2
ρ̄ẇ2 (17)

The strain energy density is a function of the membrane gradients and the tension.

UdΩ =
1

2
P

[(
∂w

∂x

)2

+

(
∂w

∂y

)2
]

(18)

Mixed Form.

Discretization of the governing equation in its current form results in a displace-

ment formulation. To obtain a mixed formulation, the second-order equation will be

resolved into a system of first-order equations by the application of constraints. Using

the variational approach, the governing equations will now be re-derived using La-

grange Multipliers to introduce new dependent variables and enforce the constraints.

The generalized momentum p and generalized stresses σ are defined as

p ≡ ∂TdΩ

∂ẇ
= ρ̄

∂w

∂t
(19)

σx ≡
∂UdΩ

∂w/∂x
= P

∂w

∂x
(20)

σy ≡
∂UdΩ

∂w/∂y
= P

∂w

∂y
(21)

The distinction that these terms are “generalized” indicates the variables are not

necessarily based upon a physical model. In particular, the generalized stresses should

not be confused with Cauchy stresses. These relationships will be enforced by the
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Figure 1. Diagram of degrees of freedom for the mixed formulation.

constraint equations gi = 0, where

g1 = p− ρ̄ẇ (22)

g2 = σx − P
∂w

∂x
(23)

g3 = σy − P
∂w

∂y
(24)

Taking the variation of the constraint equations for use later in the derivation, we

obtain

δg1 = δp− ρ̄∂δw
∂t

(25)

δg2 = δσx − P
∂δw

∂x
(26)

δg3 = δσy − P
∂δw

∂y
(27)

In terms of the generalized momentum, the variation of the kinetic energy expression

becomes

δTdΩ = ρ̄ẇ δẇ =
1

ρ̄
pδp (28)
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Similarly, in terms of generalized strains, the potential energy becomes

UdΩ =
1

2P

(
σ2
x + σ2

y

)
(29)

and its variation is

δUdΩ =
1

P
(σxδσx + σyδσy) (30)

The virtual work due to a prescribed external pressure force f , where in the linear

membrane case f(x, y, t) acts in the same direction as the displacement w, is expressed

as

δWdΩ = fδw (31)

Applying Hamilton’s Law of Varying Action.

To apply Hamilton’s Law of Varying Action, the energy functional is formed .

I =

t1∫
t0

(
T − U +

∑
i

λigi

)
dt (32)

Next, the sum of virtual work and the first variation of the energy functional is set

to zero [7].

δI + δW = 0 (33)

The expressions for the individual terms are substituted, and the chain rule is applied

to the Lagrange Multiplier summations, leading to the expanded expression

0 =

t1∫
t0

∫∫
Ω

[
p

ρ̄
δp− σx

P
δσx −

σy
P
δσy +

∑
i

λiδgi +
∑
i

giδλi + fδw

]
dΩdt (34)

Substitution of the constraint functions gi results in the functional
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0 =

t1∫
t0

∫∫
Ω

[
p

ρ̄
δp− σx

P
δσx −

σy
P
δσy + fδw

+ λ1

(
δp− ρ̄∂δw

∂t

)
+ λ2

(
δσx − P

∂δw

∂x

)
+ λ3

(
δσy − P

∂δw

∂y

)
+

(
p− ρ̄∂w

∂t

)
δλ1 +

(
σx − P

∂w

∂x

)
δλ2 +

(
σy − P

∂w

∂y

)
δλ3

]
dΩdt (35)

Integration by parts is applied to each term that contains a derivative of a variation

of a variable. This procedure moves the derivatives to the Lagrange multipliers and

extracts the boundary conditions.

−
t1∫
t0

∫∫
Ω

ρ̄λ1
∂δw

∂t
dΩdt =

t1∫
t0

∫∫
Ω

ρ̄
∂λ1

∂t
δw dΩdt−

∫∫
Ω

ρ̄λ1 δw dΩ |t1t0 (36)

−
t1∫
t0

∫∫
Ω

Pλ2
∂δw

∂x
dΩdt =

t1∫
t0

∫∫
Ω

P
∂λ2

∂x
δw dΩdt−

t1∫
t0

∫
Γ

Pλ2 δw nx dΓdt (37)

−
t1∫
t0

∫∫
Ω

Pλ3
∂δw

∂y
dΩdt =

t1∫
t0

∫∫
Ω

P
∂λ3

∂y
δwy dΩdt−

t1∫
t0

∫
Γ

Pλ3 δw ny dΓdt (38)
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After performing the integration by parts, the functional is

0 =

t1∫
t0

∫∫
Ω

[
p

ρ̄
δp− σx

P
δσx −

σy
P
δσy + fδw

+ λ1δp+ λ2δσx + λ3σy + ρ̄
∂λ1

∂t
δw + P

∂λ2

∂x
δw + P

∂λ3

∂y
δw

+

(
p− ρ̄∂w

∂t

)
δλ1 +

(
σx − P

∂w

∂x

)
δλ2 +

(
σy − P

∂w

∂y

)
δλ3

]
dΩdt

−
∫∫
Ω

ρ̄λ1 δw dΩ |t1t0

−
t1∫
t0

∫
Γ

[Pλ2 δw nx + Pλ3δw ny] dΓdt (39)

Next we collect terms associated with each variational term.

0 =

t1∫
t0

∫∫
Ω

[(
ρ̄
∂λ1

∂t
+ P

∂λ2

∂x
+ P

∂λ3

∂y
+ f

)
δw

+

(
λ1 +

p

ρ̄

)
δp+

(
λ2 −

σx
P

)
δσx +

(
λ3 −

σy
P

)
δσy

+

(
p− ρ̄∂w

∂t

)
δλ1 +

(
σx − P

∂w

∂x

)
δλ2 +

(
σy − P

∂w

∂y

)
δλ3

]
dΩdt

−
∫∫
Ω

ρ̄λ1 δw dΩ |t1t0

−
t1∫
t0

∫
Γ

[Pλ2 δw nx + Pλ3δw ny] dΓdt (40)
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Since this equation must be true for all permissible functions δw, δp, δσx, and δσy,

the meanings of the Lagrange multipliers can be determined by inspection.

λ1 = −p
ρ̄

(41)

λ2 =
σx
P

(42)

λ3 =
σy
P

(43)

Substituting these expressions into the functional eliminates the Lagrange multipliers.

0 =

t1∫
t0

∫∫
Ω

[(
−∂p
∂t

+
∂σx
∂x

+
∂σy
∂y

+ f

)
δw

−
(
p− ρ̄∂w

∂t

)
δp

ρ̄
+

(
σx − P

∂w

∂x

)
δσx
P

+

(
σy − P

∂w

∂y

)
δσy
P

]
dΩdt

+

∫∫
Ω

p δw dΩ |t1t0

−
t1∫
t0

∫
Γ

[σx δw nx + σyδw ny] dΓdt (44)

By collecting the terms according to their variational components, we obtain the

mixed form of the governing equation and recover the three constraint equations.

These four equations collectively form the basis for the upcoming finite element de-

velopment.

∂p

∂t
− ∂σx

∂x
− ∂σy

∂y
= f (45)

p− ρ̄∂w
∂t

= 0 (46)

σx − P
∂w

∂x
= 0 (47)

σy − P
∂w

∂y
= 0 (48)
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Domain Discretization

The space-time mesh was constructed by duplicating the spatial mesh at each

time increment t + n∆t. Each initial spatial node (x, y, t0), referred to in this paper

as a parent node, has the offspring (x, y, t0 + n∆t). Thus each node in the domain is

uniquely identified by its (x, y, t) coordinates. For this study ∆t was constant, though

it could certainly be varied to optimize performance. Each node has four degrees of

freedom: w, p, σx, and σy, any of which could be fixed or otherwise prescribed.

Elements.

Two well-known three-dimensional solid elements were utilized as space-time el-

ements. Both are basic trilinear isoparametric elements. Using ξ and η to denote

in-plane local coordinates, the local coordinate system is denoted as (ξ, η, τ) and is

aligned with the global system (x, y, t). Though the third axis is time rather than

space, no modifications to the interpolation functions or integration procedures were

necessary. Conceptually the resulting elements may be thought of as two planar mem-

brane elements, one at time t and the other at time t+ ∆t, stacked upon each other

to create an internal volume that is a space-time subdomain D. A slab is defined

as the set of all of the elements in space between two given times [60], so the entire

solution domain consists of a stack of Nt slabs where Nt is the number of time steps.

In this paper, the term “surface element” refers to a quadrilateral or triangle face in

the (x, y) plane that is shared between two elements at the given time slice.

The first element is variously called a trilinear hexahedral [58], hexahedron [102],

or when using right angles a linear brick [58]. It is an extension of the bilinear

quadrilateral into the third dimension. The complete interpolation polynomial is

Ni = (1 + ξiξ)(1 + ηiη)(1 + τiτ)/8 where ξ, η, τ ∈ [−1, 1], providing C0 continuity

between elements. The 4th-order accurate 2x2x2 integration points are (ξ, η, τ) =
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(a) Hexahedra (b) Triangular prisms

Figure 2. Representative slabs of elements.

(±
√

1/3), (±
√

1/3), (±
√

1/3). Reduced integration performed poorly and was not

used.

The second element is the triangular prism, also called a wedge or a right penta-

hedron [102]. It can be viewed as an extension of the constant-strain triangle or a

degenerate case of the hexahedron [58]. The C0 linear shape functions are given in

Eq. 49 [67] with ξ, η ∈ [0, 1] and τ ∈ [−1, 1].

Ni =
1

2
(1− ξ − η)(1 + τiτ), i = 1, 4 (49)

Ni =
1

2
ξ(1 + τiτ), i = 2, 5

Ni =
1

2
η(1 + τiτ), i = 3, 6

The 3x2 integration points are (ξ, η) = (1
6
, 1

6
), (2

3
, 1

6
), (1

6
, 2

3
) at τ = ±

√
1/3, suffi-

cient for up to a second degree polynomial. As with the hexahedral element, reduction

of the integration order severely degraded the results.

The local element matrices were constructed to satisfy the governing equations as

shown in Eq. 50. Since there are four degrees of freedom per node the resulting block
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stiffness matrix K was 32x32 for a hexahedron and 24x24 for a triangular prism.

Boundary conditions were imposed locally by removing the appropriate rows and

columns from the stiffness matrix and adjusting the right-hand side accordingly [28].



0 Kvvt −Kvvx −Kvvy

−ρ̄Kvvt Kvv 0 0

−PKvvx 0 Kvv 0

−PKvvy 0 0 Kvv





w

p

σx

σy


=



Kvvf

0

0

0


(50)

Kvv =

∫
D

NTNJdD (51)

Kvvt =

∫
D

NT ∂N

∂t
JdD (52)

Kvvx =

∫
D

NT ∂N

∂x
JdD (53)

Kvvy =

∫
D

NT ∂N

∂y
JdD (54)

where D is the element subdomain of the problem domain Ω × [t0, tf ]. The non-

zero values were then inserted into the sparse, square global stiffness matrix. For

a discretization with Ns spatial nodes and Nt time steps, and accounting for the

four degrees of freedom per node due to the mixed formulation, the matrix size is

[4Ns(Nt + 1)]2 minus rows and columns eliminated through imposition of boundary

or initial conditions. For dense spatial meshes or long simulations, hardware ca-

pacity clearly becomes a practical concern and at some point this method becomes

unsuitable. The formulation results in a single linear equation, the solution of which

provides the displacement, momentum, and in-place stresses for each node.

After obtaining the solution vector, post-processing matched the degrees of freedom to

the parent nodes to create the response history for each surface node of the membrane.
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Static Verification and Spatial Convergence.

For the present method, a static problem is a special case of the general method –

the same algorithm is used for both static and dynamic analyses. For a static analysis

the generalized momentum p is set to zero for every node in the space-time mesh, and

spatial boundary conditions are fixed to their values at t = 0. These constraints are

sufficient to determine a unique static solution. Though only one time step is required

to generate a single slab of elements and subsequent static solution, the solution is

identical for an arbitrarily large number of time steps. The equilibrium of each static

solution was verified during post-processing by checking that the field values of a

parent node were identical to those of its offspring.

Static verification was performed by use of Examples 2.8 and 4.1 in Reddy’s text-

book [110], which conveniently provide both an analytical solution and finite element

approximations. The FE solutions were obtained using displacement formulation and

bilinear quadrilateral and triangle elements on two grids (element size he= 0.25 and

he = 0.125, or equivalently as the number of elements in his mesh, N = 4 and N = 8).

Setting P = ρ̄ = f = 1, the governing equation is the Poisson equation,

−∇2w = 1 (55)

The domain was a 1× 1 square, x, y ∈ [0, 1], with mixed boundary conditions

w(x, 1) = 0 (56)

w(1, y) = 0 (57)

∂w

∂x
(0, y) = 0 (58)

∂w

∂y
(x, 0) = 0 (59)
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The series solution was therefore

w(x, y) =
1

2

{(
1− y2

)
+

32

π3

∞∑
n=1

(−1)n cos [(2n− 1) πy/2] cosh [(2n− 1) πx/2]

(2n− 1)3 cosh (2n− 1) π/2

}
(60)

The STCG method was employed using both types of elements. The error, ε, was

defined as the displacement error at the origin. The observed rate of convergence for

both elements was two, as shown in Figure 4. The errors were approximately the

same as those of Reddy’s displacement method.

Figure 3. Representative Poisson equation solution using square elements (he = 0.1).

Figure 5 plots STCG results on the x-axis for the two coarsest mesh sizes (the same

as used by Reddy). Mild variations of the solution are evident, a phenomenon that

can occur in mixed formulations with certain interpolation combinations [19, 146]. In

this case they reduced significantly as the mesh was refined and the model remained

consistent.

Time Integration Performance.

In this section we investigate the accuracy and reliability of the model in repro-

ducing periodic signals of varying frequency. The objective is to derive a methodology

39



-4.5

-4.0

-3.5

-3.0

-2.5

-2.0

-1.5

-2.0 -1.5 -1.0 -0.5 0.0

lo
g
(ε

)

log(he)

TCG Triangles

TCG Squares

Reddy Triangles

Reddy Squares

2

1

Figure 4. Convergence of the center displacement for both element types.

0.15

0.20

0.25

0.30

w

0.00

0.05

0.10

0 0.25 0.5 0.75 1

x

N=4

N=8

Exact

(a) Triangle elements.

0.15

0.20

0.25

0.30

w

0.00

0.05

0.10

0 0.25 0.5 0.75 1

x

N=4

N=8

Exact

(b) Square elements.

Figure 5. Solutions along the x-axis for the static Poisson problem.
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for determining ∆t and characterizing limitations and restrictions on the choice. At

least ten samples per period are required by rule of thumb [120] and as the practical

limit for a linear approximation of a periodic signal [130]. These guidelines as well as

stability limits will be tested by numerical experimentation and compared to other

methods. Let ω be the angular frequency. Frequencies will be normalized by the

sampling rate ωs. Depending on context, the normalized frequency will be written

either as ω∗ where ω∗ = ω/ωs, or as ∆t/T , which is numerically identical and found

in finite element texts [8, 58]. To avoid high frequencies being folded into the lower

frequency band (aliasing) one must sample at more than twice the Nyquist frequency

(ωs > 2ωN , where ω∗N = 0.5) [105, 33, 120]. Finally, since signals are distorted by

the model, frequencies observed in model output are denoted with a bar (e.g., ω̄∗). It

should be noted that a spectrum of normalized frequencies is present in every dynamic

response signal.

First we look at how the sampling rate affects the Gaussian quadrature accuracy in

the time axis. Consider the time span of one element slab ∆t and a periodic signal of

period T traversing it. The fraction of the period covered by the element has already

been defined as the normalized frequency ω∗ = ∆t/T . Consider also that the element

may be sampling any portion of the signal depending on the phase φ. The error is

the percentage difference between the results of the well-known two-point Gaussian

quadrature integration and the analytical solution. The bounds of the integration

error shown in Figure 6 depict the normalized error at the worst-case φ. As the

sampling rate approaches infinity (∆t/T → 0), the error approaches zero because

the linear approximation approaches the exact solution regardless of the phase. Also

regardless of phase, when sampling at the Nyquist frequency the linear quadrature

produces a zero result (the integration points will be equidistant from the t-axis and

on opposite sides). The error is less than 3% for ω∗ = 0.1 and less than 13% for
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ω∗ = 0.2.

Figure 6. Worst-case quadrature error bounds for all phase angles.

For the following numerical investigations a single degree-of-freedom simple har-

monic oscillator was formed using two equally-sized surface elements in the (x, y)

plane. Their edges were joined along the axis x = 0, they were placed between simple

supports located at x = ±1, subjected to an initial displacement w(0, y, 0) = 1 along

their interface, and released. The solution was w = cosωt where ω = 1.5c/h.

Figure 7. Diagram of the simple harmonic oscillator configuration.

First a convergence study in time was performed. The simulation was run for

two periods with varying numbers of elements (equivalent to varying the normalized

frequency). The error was defined as the mean error magnitude for all solution points.

As shown in Figure 8, the observed rate of convergence was two.

Next the oscillator was run for 100 periods over a series of runs with different values

of ω∗ for the oscillator. The values of ω∗ were varied by changing the oscillator’s
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Figure 8. Time convergence results for the STCG model.

natural frequency with E. As seen in Figure 9, a spurious mode was evident at

a higher frequency than the fundamental response. As ω∗ moves right from the

origin the spurious mode migrates leftward from ωN . This behavior often indicates

the spurious peak has been aliased. The frequencies of the peaks given the known

input frequency are shown in Figure 10(a). Given an ω∗ on the vertical axis, one

reads horizontally right to find the model-predicted normalized frequencies ω̄∗ of

both responses. In every case the peaks merged when ω∗ ≈ 0.276 and ω̄∗ ≈ 1/3. The

amplitude distortion as the frequency increases may be seen in Figure 10(b) where

the largest observed displacement and the mean of the displacement magnitudes for

the entire run are depicted for various runs. For a perfectly reproduced signal, the

maximum would be 1.0 and the average magnitude approximately 0.64. A ramp-up of

the maximum observed displacement was evident prior to the peaks merging. When

the frequency of the oscillator was raised further the solution was severely damped

and converged to zero within a few times steps. Though the precise mechanism in this

model has not yet been determined, this behavior has been noted in finite element
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complex wavenumber Fourier analyses [130]. Accordingly we will refer to ω̄∗ ≈ 0.333

as the cutoff frequency.

Nearly identical behavior was mathematically detailed and reproduced by [130]

while performing a finite element complex wavenumber Fourier analysis. The fol-

lowing briefly describes their findings for comparison to the present results. Linear

element discretization of the reduced wave equation for a uniform elastic bar produces

regions of the frequency domain called the passing band and the stopping band. They

are separated by the cutoff frequency αmax using a different normalization α = ωh/c.

When α < αmax the imaginary component of the eigenvalue is zero and the wave

propagates (passes); when α > αmax the imaginary components produce rapid damp-

ing, as seen in our Figure 10(b). For a diagonalized mass matrix αmax = 2, and

the reference frequency αref is set at ten elements per wavelength (ω∗ = 0.1 in our

nomenclature). Then we have from their development the ratio

αmax
αref

=
2

2π/10
= 10/π (61)

Setting the ratio h/c constant, the ratio αmax/αref is equal to the ratio of equivalent

normalized frequencies in our development. Hence we can solve for our cutoff fre-

quency. For the simple harmonic oscillator ω∗ = 0.1 and ωs = 15 rad/s produced an

output signal at ω̄∗ = 1.52 rad/s.

ω̄∗max =

(
10

π

)
ω̄∗ref =

(
10

π

)(
1.52

15

)
= 0.323 (62)

This prediction is within 3% of our model’s cutoff frequency. The comparison between

results strongly suggests that the current technique is filtering out all content above

ω∗ ≈ 0.276.

The numerical dispersion in terms of period distortion was compared to that pro-
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(a) Displacement, ω∗ = 0.1 (b) Frequency, ω∗ = 0.1

(c) Displacement, ω∗ = 0.2 (d) Frequency, ω∗ = 0.2

(e) Displacement, ω∗ = 0.27 (f) Frequency, ω∗ = 0.27

(g) Displacement, ω∗ = 0.28 (h) Frequency, ω∗ = 0.28

Figure 9. Displacement history and associated frequency response of the simple har-
monic oscillator with increasing time steps.
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(a) Frequencies of true and spurious modes. (b) Amplitude distortion with increasing ω∗.

Figure 10. Response frequency and magnitude behavior of the simple harmonic oscil-
lator.

duced by two of the most commonly-used direct integration techniques: the central

difference method and the trapezoidal rule. Both are sub-cases of the Newmark

method. The central difference method is obtained when β = 0 and γ = 1
2
. It is

explicit and therefore conditionally stable with the limit ∆t/T ≤ 1/π. The trape-

zoidal rule, where β = 1
4

and γ = 1
2
, is symplectic with unconditional stability. The

dispersion relationship for the present method can be seen on the left-hand curve of

Figure 10(a), which shows a nearly linear relationship of ω∗/ω̄∗ through ω∗ = 0.2.

Separately, the one-dimensional central difference and trapezoid rule algorithms were

used to solve the same ordinary differential equation [102]. The results are shown

in Figure 11. As the normalized frequency increased, the trapezoid rule elongated

the period and the central difference method compressed it, matching results in the

literature [8]. The simultaneous TCG preserved the period to within 0.1% up to

∆t/T = 0.1 and within 0.7% up to ∆t/T = 0.18. This frequency preservation is vital

since our primary goals include the reproduction of modal natural frequencies.

Although the present model was not susceptible to instability, the cutoff frequency

places a clear limit on the useful part of the spectrum. From the cutoff frequency
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Figure 11. Period distortion comparison for different integration schemes

one can derive the maximum allowable time step ∆tcr in terms of element size and

wave speed. Note that the standard notation h is used here for the representative

maximum element spatial length, not to be confused with membrane thickness.

∆tcr ≈ 0.276T = 0.276 (2π/ω) = 0.276
2πh

1.5c
= 1.16

h

c
(63)

The constant 1.16 represents the maximum allowable Courant Friedrichs-Lewy Num-

ber CFL. The cutoff frequency allows a slightly higher CFL than the broadly rep-

resentative cases listed in Table 1 and is therefore less restrictive on the choice of

∆t.

Table 1. Survey of representative values of CFLmax from the literature.

1.0 Wave equation with linear elements [58]
1.0 Unsupported axial bar using lumped masses [28]

0.707 Rectangular 4-node quadrilateral elements with central difference method [58]
0.577 Two-node linear rod with central difference method [58]

When solving the wave equation with a linear element and the Newmark method,

CFL = 1 is not only limiting but also optimal [58]. Similarly, for a two-node linear
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rod element using the Newmark central difference method, the limit is CFL = 0.577.

∆t ≤ h√
3c
≈ 0.577

h

c
(64)

Hughes also provided the results of studies of rectangular 4-node quadrilateral ele-

ments along with the central difference method, which resulted in CFL = 0.707:

∆t ≤ 1

cd (1/h2
1 + 1/h2

2)
1/2
≈ 0.707

h

c
(65)

where for generality we equalize the spatial dimensions h ≈ h1 ≈ h2 and recall that

c2
d = (λ + 2µ)/ρ = E/ρ as found earlier. Lastly, Cook [28] modeled the mechanism

as an unsupported axial bar of length h. The highest frequency is ωmax = πc/h since

masses are not lumped. Thus he obtains CFL = 0.637 and the critical time step

∆tcr ≤
2

ωmax
=

2h

πc
≈ 0.637

h

c
(66)

Conservation of energy was examined by running the simple harmonic oscillator

for 100 periods. This time scale was sufficient for this study since the dynamic cases

capture at most five periods of the first mode. The phase plots for oscillations at

three different normalized frequencies are shown in Figure 12. At ω∗ = 0.1 the energy

was effectively conserved. At ω∗ = 0.2, where integration error up to 13% has been

demonstrated, the plot’s slow migration towards the origin indicates a progressive loss

of energy. At ω∗ = 0.28, just above the cutoff frequency, the extreme energy dissipa-

tion was obvious as the solution collapsed to the resting position. This phenomenon

was also clear in terms of amplitude decay in Figure 10(b).

In this section we have established the following performance observations: fre-

quencies are accurately reproduced through ω∗ = 0.10, accuracy degrades through
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(a) ω∗ = 0.1 (b) ω∗ = 0.2 (c) ω∗ = 0.28

Figure 12. Energy conservation of the simple harmonic oscillator at different normalized
natural frequencies.

ω∗ = 0.20 due to integration error, and results are increasingly unreliable as the

cutoff frequency ω∗ ≈ 0.276 is approached. Since the model aggressively dissipates

signals above the cutoff frequency, frequency content there is noise. The next section

outlines a methodology based on these results.

Membrane Dynamics

Cases and Methodology.

Two canonical cases were selected for comparing model results to analytical solu-

tions: a rectangular membrane and a circular membrane. The setup parameters are

provided in Table 2. Note that only one-fourth of the membrane was modeled in each

case using zero-force boundary conditions. The steps of the method follow:

1. Choose the target frequency ωtgt, the highest frequency that must be accurately

reproduced.

2. Calculate the time increment. To ensure sufficient accuracy at ωtgt,

∆t =
Ttgt
10

=
π

5ωtgt
(67)
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3. Ensure the surface elements are properly sized (h is element size). From Eq. 63,

h ≥ c∆t

CFLmax
= 0.865c∆tcr (68)

As noted in the literature for wave equation discretization [58, 28], CFL values

close to 1.0 provided the best results. When CFL was near 0.5, for example,

oscillations were introduced at wavelengths that interfered with the targeted

modes. Thus, for best results strive for

h = c∆t (69)

4. Run the simulation. All nodes at t = 0 require initial displacements and mo-

menta.

5. Determine the highest valid frequency content in the model’s results.

(a) As demonstrated by the cutoff frequency, content with T < 3∆t is not

valid (the small wavelengths are not sampled at a sufficient rate).

(b) When the CFL is low (element size large relative to the time increment),

the oscillations span more time intervals. From Eq. 63 and the size limit

in Eq. 68, the noise region is defined as T < (4π/3)(h/c).

After the results of the model have been obtained, one may consider invalid any

content with a period of

T < max

(
3∆t,

4π

3

h

c

)
(70)

The analytical solution for the rectangular membrane is given in Eq. 71 [108].

To target the third modal frequency, ∆t was calculated to be one tenth of the third
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mode’s wavelength. The membrane was subjected to an initial velocity that was

uniform across the entire surface.

Table 2. Dynamic test cases for the STCG model. Only one quadrant was modeled
(x > 0 and y > 0).

Rectangle Circle

Forcing function Uniform r ≤ 0.3a: Impulse p0 in [t0, t1]
initial velocity r > 0.3a: Zero

Element type Right Hexahedra Triangular prisms
Dimensions 2.4 x 2.0 unit radius(a = 1)
Surface mesh 143 nodes 81 nodes

120 elements 121 elements
Element length h 0.141 0.110
c 1.0 1.0
∆t 0.128 0.114
CFL 0.91 1.04
Stiffness matrix 48, 454 square 31, 424 square

2, 305, 821 non-zero 1, 193, 548 non-zero
0.10% non-zero 0.12% non-zero

wmn(x, y, t) =
∞∑
m=1

∞∑
n=1

sin
mπx

a
sin

nπy

b
Bmn sinωmnt (71)

ωmn = cπ

[(m
a

)2

+
(n
b

)2
]1/2

Bmn =
4

abωmn

∫ a

0

∫ b

0

ẇ0(x, y) sin
mπx

a
sin

nπy

b
dxdy

=
4

mnπ2ωmn
(cosmπ − 1) (cosnπ − 1)

For the circular membrane the two-dimensional mesh as shown in Figure 13(b) was

generated using the open source software Gmsh [43]. The membrane had an outer

radius a = 1 and the impulse was a uniform pressure p0 applied inside the radius

b = 0.3 only at t = 0. The natural frequencies were ωmn = cβmn where βmna are the
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zeros of the Bessel functions Jm(βa). The exact solution is given in Eq. 72 [91]. The

time increment was chosen to target the third modal frequency.

(a) Rectangular membrane. (b) Circular membrane.

Figure 13. Meshes used for evaluation of the STCG method for the dynamic cases.

w(r, θ, t) =
2p0bc

ρa2

∞∑
n=1

J1 [(ω0n/c) b] J0 [(ω0n/c) r]

ω2
0nJ

2
1 [(ω0n/c) a]

∫ t

0

f(τ)sinω0n (t− τ) dτ (72)

Modal Frequency Results.

The power spectral density (PSD) for the rectangular membrane with respect to

ω̄∗ for every node is shown in Figure 14(a). The vertical lines indicate the exact

solutions ω∗ so any phase distortion can be discerned by offset peaks. The first seven

mode frequencies were accurately predicted but beyond ω̄ = 8 rad/s (approximate

ω∗ = 0.16) the calculated modal frequencies are inaccurate. Figure 14(b) displays a

single PSD that is the supremum of all nodal values at each frequency; thus all PSDs

in Figure 14(a) lie under the single PSD in Figure 14(b). The dotted line indicates the

exact solution for the discrete nodes and was thus equally affected by the sampling

rate. The first seven modes were included in the exact solution.

The PSD plots for the circular membrane were created in the same manner as those
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(a) Composite plot of PSDs for every node.
Vertical lines depict exact modal frequencies.

(b) Comparison of model results to exact so-
lution.

Figure 14. Frequency spectrum of the response of the rectangular linear membrane

of the rectangular membrane and are shown in Figure 15. The analytical solution in

Figure 15(b) includes only the first four modes. The first three mode frequencies were

accurately reproduced with the third mode at approximately ω∗ = 0.15. However,

the spatially discontinuous impulse generated much more high-frequency noise than

the uniform impulse in the rectangular membrane case. The noise above ω̄∗ = 0.25

occluded the response.

(a) Composite plot of PSDs for every node.
Vertical lines depict exact modal frequencies.

(b) Comparison of model results to exact so-
lution.

Figure 15. Frequency spectrum of the response of the circular linear membrane
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Response History Results.

The response histories for four nodes of the rectangular membrane are shown in

Figure 16. The thick line depicts the numerical prediction. The thin line depicts

the analytical solution including the first seven modes. The axis limits for all of the

plots are consistent to illustrate relative magnitudes. As expected from the PSD

in Figure 14(b), high-frequency noise was present in the form of “jitters.” Good

examples can be seen in Figure 16(b) at four locations: the first two peaks, at 5.5

seconds, and at 12 seconds. Otherwise the model predictions closely matched the

exact solution.

(a) Point (0.1,0.1) (b) Point (0.3,0.6)

(c) Point (0.6,0.5) (d) Point (0.9,0.8)

Figure 16. Response histories for the rectangular linear membrane.

The non-uniform impulse excited in the circular membrane case was more chal-
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lenging for the numerical model. The responses of nodes at radius r = 0.16, 0.32, 0.54,

and 0.73 are depicted in Figure 17. The thick line depicts the numerical prediction.

The thin line depicts the analytical solution including the first seven modes. The

axis limits for all of the plots are consistent to illustrate relative magnitudes. High-

frequency noise was clearly evident, particularly around sharp slope breaks of the

lower modes. Despite the high-frequency oscillations, the lower modes were accu-

rately predicted throughout the run.

(a) r = 0.16 (b) r = 0.32

(c) r = 0.54 (d) r = 0.73

Figure 17. Response histories for the circular linear membrane.
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Smoothing the Response Histories.

The intensive effort over the decades to optimize integrators for dissipating high

frequency content has been absolutely crucial for predictor algorithms, where errors

due to noise can accumulate through time steps. In this simultaneous TCG method,

however, they did not adversely impact the generally good performance of the model

at the targeted frequencies. The spurious modes had a negligible effect on the energy

of the system during the short runs of this study.

So what of the requirement that an integrator dissipate the unwanted high-

frequency content? A previous TCG study demonstrated that dissipation could

be handled outside of the primary integration algorithm. The desired effects were

achieved with a dual-algorithm technique — an accurate high-order technique with

little to no damping provided the bulk of the response history, while a second dissi-

pative lower-order method applied over several time steps prior to a recorded event

stabilized the solution [62]. Depending on the goals of the analysis, the present

method can be employed as part of a two-step process: accurate simultaneous TCG

solution followed by the application of a low-pass filter. The low-pass filter smooths

the response histories by eliminating the undesired high-frequency content.

The options available for a low-pass filter are endless and we demonstrate only one:

the Savitzky-Golay filter [99, 114, 104]. Used primarily in spectroscopy, the Savitzky-

Golay filter minimizes distortion of the signal while reducing the noise. Most filters

operate in the frequency domain; in contrast, the Savitzky-Golay filter operates in the

time domain by performing local least-squares polynomial fits throughout the time

series. Parameters include the order of the polynomial n and the size of the window

N inside which the local regression is performed. The window size, also called the

filter length, is defined as number of nodes in the window. The window extends

symmetrically ±k∆t from node i where k is an integer; hence N = 2k + 1. Given
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the minimum reliable wavelength T from Eq. 70 and the definition CFL ≡ ∆t/(h/c),

the ideal window size in terms of time increments is the reciprocal of the normalized

frequency.

T

∆t
=

4π

3

(
1

CFL

)
(73)

In converting the ideal window size to an odd integer N for use in the algorithm,

conservative rounding procedures minimized the loss of desired content. The operator

floor returns the largest integer less than the argument, and odd returns the largest

odd integer less than the argument.

N = odd (floor (T/∆t)− 1) (74)

For CFL < CFLmax this technique ensured a minimum window size of N = 3. When

CFL < 0.46, the large window size resulted in excessively attenuated peaks. Table 3

shows the window sizes as a function of CFL. The filter order was set to one. It is

important to note that in general the Savitzky-Golay parameters can be optimized

to provide good smoothing of long-wavelength signals or good fidelity of narrow peak

shapes, but not both simultaneously [104]. For this demonstration the former goal

was chosen.

Table 3. Savitzky-Golay window size determination.

CFL range Window Size N

0.46 < CFL < 0.6 7
0.6 ≤ CFL ≤ 0.83 5

0.83 < CFL 3

The effects of the Savitzky-Golay smoothing on the rectangular membrane solution

are shown in the frequency domain in Figure 18, and in the time domain in Figure 19

for comparison to the unfiltered responses of Figure 16. Likewise, the smoothed
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solution for the circular membrane is shown in Figure 20 and in Figure 21, which

may be compared to the raw solution of Figure 17. In both cases, the first two modes

remained largely intact with only slight attenuation of the peaks. The third and fourth

modes were slightly attenuated. For the rectangular membrane, the spurious jumps

were removed and the smoothed results very nearly matched the exact solutions. Even

for the more challenging circular membrane, the smoothing significantly reduced the

noise and the lower modes tracked the exact solution closely.

Figure 18. Filtered frequency spectrum for rectangular membrane.

The demonstrated smoothing technique traded some accuracy at the peaks to

eliminate most of the noise while preserving the targeted frequency spectra. The se-

lection and design of the filter were guided by the observed limitations of the model.

Many alternative filtering techniques are available, but none should be applied arbi-

trarily. We merely demonstrated that this particular solve-then-smooth process was

a viable one for the dynamic cases in this study.

Summary

This study has demonstrated the effectiveness of a baseline STCG formulation

in predicting targeted modal frequencies and producing response histories of a linear

membrane. A methodology based on signal sampling concepts led to a time increment

sufficient for capturing frequency content in a desired range. The time increment was
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(a) Point (0.1,0.1) (b) Point (0.3,0.6)

(c) Point (0.6,0.5) (d) Point (0.9,0.8)

Figure 19. Filtered response histories for the rectangular linear membrane.

Figure 20. Filtered frequency spectrum for circular membrane.
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(a) r = 0.16 (b) r = 0.32

(c) r = 0.54 (d) r = 0.73

Figure 21. Filtered response histories for the circular linear membrane.
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no more restrictive than that of conventional methods. The spurious high-frequency

oscillations were consistent (thus characterizable) and did not cause instability or de-

grade the lower-frequency accuracy. Post-process filtering was not offered as a panacea

or ultimate replacement for an optimal algorithm/element combination. However, for

these cases, characterization of the unwanted frequency content led to a smoothing

methodology capable of removing much of the noise without affecting the modal fre-

quencies. These results were accomplished with fairly coarse spatial meshes and the

simplest of elements.

Although the simultaneous solution approach was analyzed in this work when

applied to transient dynamics, there is greater potential for application to periodic

problems. Example scenarios include periodic external forces or periodic boundary

conditions, either of which could conceivably be induced by a wing flapping mecha-

nism. In this case, the simultaneous solution approach turns an initial value problem

(IVP) into a boundary value problem (BVP), enabling the employment of innumer-

able finite element techniques in the time domain. Based on the results of this study,

the method holds promise for such an application.
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IV. Nonlinear Analysis of Membrane Dynamics

For numerical simulation of nonlinear membranes, a different approach was taken

than the one that led to the Simultaneous Time-Continuous Galerkin (STCG) method

of Chapter III. There were several rationales for this decision. First, the nonlinear

model was to include both in-plane and out-of-plane displacements, so the size of

the global matrices of the STCG would quickly exceed available computer hardware

limitations. Second, since the system would no longer be linear, timely convergence

to the global solution given an arbitrary initial guess became a concern. Lastly, the

high-frequency noise present in the STCG solutions was not catastrophic in the linear

case, but could potentially become more troublesome for a nonlinear system.

Instead of the space-time FEA approach, the more common path was taken by

separately discretizing space and time to employ a time-marching algorithm. In this

way, novel discretization schemes could be devised separately for both space and

time, independently studied, and finally combined to fulfill the ultimate objectives

of this research. This chapter is organized to follow this logic. First, the Hermite

time interpolation scheme is detailed, followed by the point collocation spatial dis-

cretization scheme. Finally, the combination of the two schemes to simulate dynamic,

geometrically nonlinear membranes is examined.

Hermite Time Interpolation

This section describes a Hermite time interpolation method that differs from pre-

vious related works in the literature [109, 81] by its formulation. Rather than using an

integral formulation, the proposed method determines the unique quintic polynomial

interpolation using beginning and end point constraints on the third derivative of the

function, called the “jerk” [123]. This approach opens possibilities for performance
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optimization by developing appropriate constraint formulas.

Besides proposing an alternative formulation, the previously-mentioned works will

be extended by calculating the precise stability boundaries for a linear unforced os-

cillator, exploring the fundamental source of the approach’s instabilities, precisely

calculating the dispersion (relative period error), and demonstrating a procedure for

accurately estimating local error. To illustrate implementation of the technique, a

fixed-point iteration algorithm will be provided as a launching point for general sys-

tems of nonlinear partial differential equations. Numerical examples, including mul-

tidimensional and stiff systems, will demonstrate the versatility of the method and

the utility of the local error estimation procedure.

Time Discretization.

Time is discretized by the dimensionless time τ during the time interval t0 to

t1. The time step size is ∆t = t1 − t0. In this portion of the research, superscripts

with a number from 0 to 1 indicate the discrete time at which the value is taken (for

example, u0 is the value of u at the beginning of the time step, where τ = 0).

τ =
t− t0

∆t
τ ∈ [0, 1] , t ∈

[
t0, t1

]
(75)

Consider the scalar equation L(y) = f , where the differential operator L and forcing

function f may be nonlinear, and the solution y is smooth (y ∈ C∞). The function

value y and its first two derivatives at the beginning and end of the time step are

collected into the vector z,

z =

{
y(t0) ẏ(t0) ÿ(t0) y(t1) ẏ(t1) ÿ(t1)

}T
(76)

63



and re-labeled as the discrete nodal variables displacement u, velocity v, and accel-

eration a.

z =

{
u0 v0 a0 u1 v1 a1

}T
(77)

The information in z is sufficient to determine a quintic polynomial from t0 to t1 of

the form u(τ) =
∑
biτ

i for i = 0 . . . 5 with constant coefficients bi ∈ <. The resulting

six quintic Hermite shape functions H(τ) were derived in Ref. [36] and are shown in

Eq. 78. For convenience, the first, second, and third derivatives of the Hermite shape

functions are provided in Eq. 79, 80, and 81, respectively.

H(τ) =



1− 10τ 3 + 15τ 4 − 6τ 5

∆t (τ − 6τ 3 + 8τ 4 − 3τ 5)

∆t2
(

1
2
τ 2 − 3

2
τ 3 + 3

2
τ 4 − 1

2
τ 5
)

10τ 3 − 15τ 4 + 6τ 5

∆t (−4τ 3 + 7τ 4 − 3τ 5)

∆t2
(

1
2
τ 3 − τ 4 + 1

2
τ 5
)



T

(78)

Ḣ(τ) =



(−30τ 2 + 60τ 3 − 30τ 4) /∆t

1− 18τ 2 + 32τ 3 − 15τ 4

∆t
(
τ − 9

2
τ 2 + 6τ 3 − 5

2
τ 4
)

(30τ 2 − 60τ 3 + 30τ 4) /∆t

−12τ 2 + 28τ 3 − 15τ 4

∆t
(

3
2
τ 2 − 4τ 3 + 5

2
τ 4
)



T

(79)
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Ḧ(τ) =



(−60τ + 180τ 2 − 120τ 3) /∆t2

(−36τ + 96τ 2 − 60τ 3) /∆t

1− 9τ + 18τ 2 − 10τ 3

(60τ − 180τ 2 + 120τ 3) /∆t2

(−24τ + 84τ 2 − 60τ 3) /∆t

3τ − 12τ 2 + 10τ 3



T

(80)

...
H(τ) =



(−60 + 360τ − 360τ 2) /∆t3

(−36 + 192τ − 180τ 2) /∆t2

(−9 + 36τ − 30τ 2) /∆t

(60− 360τ + 360τ 2) /∆t3

(−24 + 168τ − 180τ 2) /∆t2

(3− 24τ + 30τ 2) /∆t



T

(81)

The nodal approximation for the third derivative of y is also given a label (j for

”jerk”), so the discrete approximations of the function y and its first three derivatives

throughout a time increment t ∈ [t0, t1] are then

y(t) ≈ u(τ) = H(τ)z (82)

ẏ(t) ≈ v(τ) = Ḣ(τ)z (83)

ÿ(t) ≈ a(τ) = Ḧ(τ)z (84)

...
y (t) ≈ j(τ) =

...
H(τ)z (85)

These interpolation formulas define a trajectory with a continuous acceleration profile.

The displacement, velocity, and acceleration curves are intrinsically constrained to

each other and have been “pre-integrated” – once the acceleration curve is uniquely

determined, the velocity and displacement profiles automatically follow. Also, as will
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later be demonstrated, the polynomials will supply a wealth of information about the

dynamics occurring within the time step that can be exploited for error estimation.

Constraint Formulation.

The use of jerk constraints to define the unique solution forms the foundation of

the present method. The user-defined formulas for jerk at times t0 and t1 are tied to

the Hermite polynomial interpolation, thereby defining the beginning and end slopes

of the cubic acceleration polynomial. Thus a unique set of interpolation polynomials

for displacement, velocity, and acceleration are defined by the Hermite constraint

equations
...
H(0)z− j0 = 0
...
H(1)z− j1 = 0

(86)

It is convenient at this point to remove the acceleration variable from z, as in practice

a will be calculated in tandem with j. The resulting matrix form of the Hermite

constraint equations is

 60
∆t3

− 24
∆t2

60
∆t3

− 36
∆t2


 u1

v1

+

 3
∆t

0

9
∆t
−1


 a1

j1


=

 60
∆t3

36
∆t2

60
∆t3

24
∆t2


 u0

v0

+

 9
∆t

1

3
∆t

0


 a0

j0

 (87)

For some problems the equation can be simplified by eliminating the a and j terms

by substitution and solving the linear system directly. Otherwise, moving the a1

and j1 terms to the right-hand side provides an expression for solving the system by

fixed-point iteration. With no effect on previous developments, the scalar degrees

of freedom are now shown as vectors to generalize the scheme for multidimensional
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problems.

 u1

v1

 =

 1 ∆t

0 1


 u0

v0

+

 7∆t2/20 ∆t3/20

∆t/2 ∆t2/12


 a0

j0


+

 3∆t2/20 −∆t3/30

∆t/2 −∆t2/12


 a1

j1

 (88)

The fixed-point method shown above can also accurately be described as successive

substitution between two sets of equations [50], as shown clearly by the following

algorithm:

1. From u0 and v0, calculate a0 and j0 (unless carried over from previous time

step)

2. Guess u1 and v1

3. Calculate a1 and j1 (discussed in the next section)

4. Until converged:

(a) Calculate u1 an v1 using Eq. (88)

(b) If converged, STOP; else, update a1 and j1

The fixed point iteration method only requires the calculation of explicit vector formu-

las – the tasks of managing a Jacobian and solving a linear system at each iteration

is avoided. Convergence will be slower than the Newton method’s quadratic rate,

but acceleration methods are available if required [135]. Newton iterations are more

robust and may converge in cases where fixed point iteration fails. Generally, the

efficacy of fixed-point iteration versus Newton iterations tends to be problem-specific

and comparisons may be found in the literature [116, 48].

67



Keeping with the single-step perspective, the initial guesses for u1 and v1 in this

study were formed from the available information at time t0.

u1 = u0 + v0∆t+ 1
2
a0∆t2 + 1

6
j0∆t3 (89)

v1 = v0 + a0∆t+ 1
2
j0∆t2 (90)

The stopping criterion was based on a tolerance ε for the change in the solution vector

after an update. Letting ∆ indicate the change in a value after an iteration, iterations

were stopped when

max (|∆u|max , |∆v|max) < ε (91)

Since accuracy was the focus of the study, tight tolerances were generally set without

consideration of the number of function calls required.

Constraint Definition.

Given the Hermite interpolation scheme just described, constraints will be applied

at the end points to obtain a unique solution. Consider a single time step where

the initial displacement u0 is known, and the initial velocity v0 is given or may be

calculated from the first-order ODE. Four unknowns remain in the vector z: a0, u1,

v1, and a1. Two equations may be provided by constraining the accelerations in

accordance with the ODE or knowledge of the particular physical system.

a0 = ÿ (t0, u0, v0, f 0)

a1 = ÿ (t1, u1, v1, f 1)
(92)

When posed as a nonlinear structural engineering problem with constant mass ma-

trix M, damping matrix C, stiffness matrix K, and external load F the equilibrium
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equation is

Ma + Cv + Ku + F = 0 (93)

The familiar acceleration constraint formulas are obtained by rearranging the equi-

librium equation.

a0 = −M−1 (C0v0 + K0u0 + F0)

a1 = −M−1 (C1v1 + K1u1 + F1)
(94)

Now only u1 and v1 are unknown. To obtain the final two equations, j0 and j1 must

be defined. There is great freedom in choosing jerk constraints, as long as desired

performance is achieved. To illustrate this point, suppose requirements called for

an algorithm capable of unconditional stability and controllable dissipation. The

derivation could lead to the jerk constraints

j0 =

[
60

(
β − 3

20

)
− 24

(
γ − 1

2

)](
a1 − a0

∆t

)
(95)

j1 =

[
60

(
β − 3

20

)
− 36

(
γ − 1

2

)](
a1 − a0

∆t

)
(96)

where γ and β are scalar parameters. These jerk constraints revert the present for-

mulation to the classic Newmark formulation. (This correspondence can easily be

shown by side-by-side comparison of the Newmark equations with Eq. 88.) For non-

dissipative Newmark methods, where γ = 1/2, the constraints are identical and an

elegant symmetry is obtained.

j0 = j1 = 60

(
β − 3

20

)(
a1 − a0

∆t

)
(97)
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The Newmark jerk constraints obviously provide excellent results, but they result in

artificially oscillatory Hermite interpolations within the time step. Greater accuracy

can be achieved by defining jerk according to its physical and mathematical definition:

as the time derivative of the acceleration constraints in Eq. (92).

j0 =
...
y
(
t0, u0, v0, a0, f 0, ḟ 0

)
j1 =

...
y
(
t1, u1, v1, a1, f 1ḟ 1

) (98)

The jerk constraints are stated here in terms of acceleration, which may be eliminated

by substitution of Eqs.(94) if desired.

j0 = −M−1
[
C0a0 +

(
Ċ0 + K0

)
v0 + K̇0u0 + Ḟ0

]
j1 = −M−1

[
C1a1 +

(
Ċ1 + K1

)
v1 + K̇1u1 + Ḟ1

] (99)

For the remainder of this dissertation, although the Hermite interpolation method

has been shown to be a family of methods depending on the chosen jerk constraints,

the method will be confined to the jerk constraints of Eqs. (98).

Stability and Energy Conservation.

The linear, undamped, free system ÿ + ω2y = 0 with constant angular frequency

ω provides the prototypical case for investigating the method’s stability and energy

conservation. The constraint equations trivially fall from the ODE as a = −ω2u

and j = −ω2v. The constraint equations are substituted into Eq. 88 to produce the

iteration matrix A, which for a time step maps the initial state {u0,v0}T to the final

state {u1,v1}T . The time step size is non-dimensionalized as ν = ω∆t = 2π∆t/T ,

where T is the period of the oscillator. While ν simplifies the matrices, most of

the following discussion will reference ∆t/T , due to its widespread use in the finite
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element literature. The iteration matrix simplifies to

A =
1

ν4 + 16ν2 + 240

 3ν4 − 104ν2 + 240
(

1
ω

) (
1
3
ν5 − 24ν3 + 240ν

)
−ω (−24ν3 + 240ν) 3ν4 − 104ν2 + 240

 (100)

which is the method’s approximation of the exact iteration matrix

Aexact =

 cos (ν)
(

1
ω

)
sin (ν)

−ω sin (ν) cos (ν)

 (101)

The exact iteration matrix is typically found in Hamiltonian formulations using the

conjugate momentum p, which is equivalent to this formulation by assuming without

loss of generality that the mass m = 1, so v = p. [116, 48]. For this unforced linear

oscillator, the present method produces an iteration matrix with the same diagonal

elements as the weighted residual method of Razavi et al. [109]. Therefore, the sta-

bility characteristics will be the same and their findings can be further developed. An

in-depth examination of the iteration matrix follows, to provide greater insight into

the method.

The components of the exact iteration matrix and its approximation are compared

in Figure 22. The horizontal axes represent a chosen step size ∆t/T , and the vertical

axis is the value of the corresponding matrix element. The dashed lines are used for

the exact matrix, Aexact, and the solid lines are used for the approximate matrix,

A. The plus sign markers show the values of the iteration matrix obtained from

Ref. [109]. The absolute value of the errors is shown in the bottom right subplot

up to the Nyquist frequency (note the change to a logarithmic vertical axis). The

approximations are quite accurate for reasonable time steps, with error magnitudes

of the matrix elements less than 1 × 10−4 for ∆t/T = 0.1. However, the downside

of using this polynomial approximation is also obvious, as with increasing time step
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size, the approximations exceed the bounding range of the exact values and A12 grows

linearly without bound. The regions of instability defined by this behavior will be

characterized next.

Figure 22. Graphical depiction of the Hermite time interpolation method iteration
matrix for the simple harmonic oscillator

A symplectic method accurately reproduces the geometric structure of the ODE

and its solutions, and conserves invariants over long-duration simulations [48]. For

Hamiltonian systems in mechanics the invariant is typically energy. It is easily proven

that the iteration matrix A is symplectic because for all ω and ν it satisfies the

relationship

ATJA = J (102)

where J, the skew-symmetric operator used when representing a Hamiltonian system
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of equations in matrix form, is defined as

J ≡

 0 I

−I 0

 (103)

As with any symplectic matrix, it is also true that det(A) = 1 [89]. Since A is

an area-preserving linear mapping, the stability can be determined by finding where

|tr(A)| < 2 [2]; or, since A11 = A22, where |A11| < 1. Hence the stability can be

inspected in the upper-left plot of Figure 22. It is immediately observed that there

are two regions of instability – a small region just above ∆t/T = 0.5, and a clear limit

above ∆t/T ≈ 1.2, corresponding to those of Ref. [109]. The regions of instability

are shaded gray in the figure. We now determine the exact locations of the stability

limits. The boundaries are determined from the polynomial inequality

∣∣∣∣3ν4 − 104ν2 + 240

ν4 + 16ν2 + 240

∣∣∣∣ < 1 (104)

The terms with ν can be lumped into a single term,

∣∣∣∣1 +
2ν4 − 120ν2

ν4 + 16ν2 + 240

∣∣∣∣ < 1 (105)

with some final manipulations showing that the stability requires satisfaction of two

inequalities.

2ν4 − 120ν2

ν4 + 16ν2 + 240
> −2 (106)

ν4 − 60ν2

ν4 + 16ν2 + 240
< 0 (107)

The first statement is violated if 10 < ν2 < 12 and the second is violated if ν2 > 60,
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providing the exact instability regions in terms of sampling frequency as

√
5/(2π2) < ∆t/T <

√
3/π2 (108)√

15/π2 < ∆t/T (109)

The instability can be further characterized by an eigenvalue analysis. The expression

for the eigenvalues is

λi =
3ν4 − 104ν2 + 240± 2ν

√
2 (ν2 − 60) (ν2 − 12) (ν2 − 10)

ν4 + 16ν2 + 240
(110)

and the stability boundaries can be seen by inspection of the expression under the

radical. When the radicand is positive the eigenvalues lie on the real axis of the

complex plane and instability results [28]. The path of the eigenvalues as the time

step is increased is depicted in Figure 23(a). Starting at the dots on the right-

hand side and increasing the step size, the eigenvalues follow the unit circle in the

negative-real direction until they collide and separate at (−1, 0), corresponding to

∆t/T =
√

5/(2π2). They quickly return to the circle and follow it to (1, 0), at

which point they again collide and repel each other. They remain on the real axis as

∆t/T →∞. For a detailed discussion of this behavior, see Ref. [2].

The moduli of the two eigenvalues as a function of ∆t/T are plotted in Fig-

ure 23(b). The spectral radius ρ(A), defined as the maximum of the moduli, is equal

to one wherever the method is stable – no numerical damping is present and the

energy is conserved. The traces also show that after bifurcation, the moduli are the

reciprocals of each other, another indicator of a symplectic transformation [2]. Ex-

ploring the nature of the instability provides a launching point for devising mitigation

techniques. A small amount of physical damping can eliminate the small unstable

region just above the Nyquist frequency [109]. However, physical damping alone af-
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(a) Root locus trace of the two eigenvalues. (b) Spectral radius of the iteration matrix A.

Figure 23. Eigenvalue behavior for the simple harmonic oscillator.

fects only middle frequencies and cannot remove high frequency instabilities [58] –

algorithmic damping would be required, a topic left for future research.

Dispersion.

To quantify the method’s dispersion, let T be the period of the model solution and

T be the exact period. Then the period error is P = T/T [28] and the relative period

error is (T − T )/T [58]. The period error P can be calculated from the eigenvalues

of Eq. 110 as

P =
T

T
= ν

[
arctan

(
2ν
√

2 (ν2 − 60) (ν2 − 12) (ν2 − 10)

3ν4 − 104ν2 + 240

)]−1

(111)

As shown in Figure 24(a), the Hermite method accurately reproduces the frequency

of the oscillator up to the Nyquist frequency with a maximum relative period error of

0.030. The error is less than 0.0016 below ∆t/T = 0.2. The central difference shrinks

the period until it hits its stability limit at ∆t/T = 1/π [28]. The average accelera-

tion method significantly increases the period. To illustrate the extent, Figure 24(b)

portrays the period errors for a simple harmonic oscillator using the Hermite and

average acceleration methods at ∆t/T = 0.4. Because the numerical samples are so
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sparse, least-square fits of sinusoidal functions to each method are included in the

figure. The fidelity of frequency reproduction bodes well for the application of this

method in a wave propagation problem.

(a) Relative period errors. (b) Example of period error at ∆t/T = 0.4.

Figure 24. Relative period error for the simple harmonic oscillator comparing various
integration methods.

Local Error Estimation.

Error estimates can alert the user to potentially inaccurate solutions, trigger

damping mechanisms, or direct step size changes. A common technique is to compare

solutions from two numerical methods of different order [3]. The Runge-Kutta 4/5

has proven useful because it does so with only one more function call [117]. Since

the present method enforces constraints at the end points of a time step to dictate

the solution, the degree to which those constraints are violated in the interior offers

useful data for error estimation. An example will be developed here which uses one

additional function call at mid-step to estimate the local error.

Suppose the solution for a time step has been obtained so the vector z is known.

Let the interpolated value of acceleration at the midpoint τ = 0.5 be a0.5 = Ḧ(0.5)z.

Also at the midpoint, the acceleration constraint equation is applied to compute the
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constraint value of acceleration ǎ0.5 = ÿ (t0.5, u0.5, v0.5, f 0.5). Thus the acceleration

error δa is the difference between the constrained acceleration and the interpolated

acceleration at the midpoint of the time step.

δa = a0.5 − ǎ0.5 = Ḧ(0.5)z− ÿ
(
t0.5, u0.5, v0.5, f 0.5

)
(112)

For a consistent formulation, as the time step approaches zero, the interpolation

polynomials approach the exact solution throughout the time step and δa approaches

zero. The acceleration error will now be used to build an alternative acceleration

profile which will be integrated twice to produce a useful error parameter in terms

of displacement. First, three-point Lobatto integration puts the acceleration error

in terms of velocity. The alternative acceleration polynomial is assumed to pass

through the the points (t0, a0), (t0.5, ǎ0.5), and (t1, ǎ1) where ǎ1 = a1 + δa. The

Lobatto integration formula then provides a new estimate for the final velocity, v1
L.

v1
L = v0 +

∆t

2

(
1
3
a0 + 4

3
ǎ0.5 + 1

3
ǎ1
)

(113)

Finally, the local error estimate for displacement, δu, is calculated by a simple ap-

proximation of the integral of the velocity error through the time step.

δu =

∣∣∣∣∆t2 (
v1 − v1

L

)∣∣∣∣ (114)

To correlate the local error estimate with the exact local error, numerical experiments

were conducted using a simple harmonic oscillator. For the experiment, 1,500 data

points were created by sampling each of the time step sizes ∆t/T = 0.05, 0.1, 0.2, 0.3,

and 0.4 with 300 samples for the phase φ = [0, 2π] where y = cos(t − φ). A scatter

plot of the relationship is shown in Figure 25. Nearly all of the 1,500 data points lie

near the line of slope one. As the error estimate δu increases past 0.001, the error is
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Figure 25. Relationship between the calculated local error estimate and the exact local
error for the simple harmonic oscillator.

increasingly overestimated. The sets of points for each ∆t/T have a forked appearance

from the process of converting elliptical plots of the estimated versus exact error to

the log-log plot shown here. The error estimation process just described was used for

the numerical examples of this paper because of the strong correlation between the

estimated and exact local error for reasonable time step sizes and the conservative

overestimation of error at extreme step sizes.

Numerical Examples.

Simple Harmonic Oscillator.

The simple harmonic oscillator discussed earlier was solved from two starting con-

ditions: (y(0), ẏ(0)) = (1, 0) and (0, 1). For comparison, solutions were also obtained

using the two members of the Newmark family: the central difference method, and

the trapezoid method with γ = 1/2 and β = 1/4 [102]. Convergence for all three

methods is shown in Figure 26, and the Hermite interpolation accuracy is clearly
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superior to the second-order Newmark methods. The observed rate of convergence

matched the rates observed using other Hermite polynomial methods [109, 81].

(a) y(0) = 1, ẏ(0) = 0 (b) y(0) = 0, ẏ(0) = 1

Figure 26. Convergence for the simple harmonic oscillator from two different initial
conditions.

As expected after finding the iteration matrix to be symplectic by way of Eq. (102),

the energy of the oscillator was conserved over long durations. Figure 27 shows the

energy error at the end of 1000 periods, with the left plot depicting the last ten

periods with ∆t/T = 0.1, and the right plot depicting the last 100 periods with

∆t/T = 0.3. The error oscillates but remains bounded in a tight range, typical

behavior for symplectic methods [68].

Nonlinear Second-Order ODE.

In Ref. [3], the rates of convergence of several techniques were compared by solving

a second-order nonlinear ODE. The present method will now be applied to the same

problem with two objectives: (1) confirm the order of convergence for the method,

and (2) demonstrate its application in a fixed-point iterative algorithm. The ODE is

ÿ = −ey+1 (115)

79



(a) ∆t/T = 0.1 (b) ∆t/T = 0.3

Figure 27. Energy errors at the conclusion of a 1000-period simulation for two different
time step sizes.

with the initial conditions y(0) = 0 and ẏ(0) = θ tanh(θ/4). By setting the parameter

θ = 3.03623184819656, the exact solution for the convergence study is y(1) = 0. The

ODE directly provides the acceleration constraints of Eq. (92). The time derivative

of the ODE provides the jerk constraints of Eq. (98).

a = −eu+1 (116)

j = −veu+1 (117)

These constraint formulas contribute the acceleration and jerk values to the right-

hand side of Eq. 88. The resulting matrix equation, shown in expanded form in

Eq. 118, was used in the fixed-point iteration algorithm to obtain the solutions. The

subscript k indicates current values, while k + 1 indicates the new values upon com-

pletion of the iteration. The errors and rates of convergence in Table 4 confirm the

fourth-order convergence seen in the simple harmonic oscillator. In comparison to the

methods presented in Ref. [3], the error magnitudes were approximately the same as

those of the fourth-order Runge-Kutta method, but not quite as good as the four-step,
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fifth-order Adams-Moulton method. 60
∆t3

− 24
∆t2

60
∆t3

− 36
∆t2


 u1

v1


k+1

=

 60
∆t3

36
∆t2

60
∆t3

24
∆t2


 u0

v0


+

 9
∆t

1

3
∆t

0


 −eu0+1

−v0eu
0+1


−

 3
∆t

0

9
∆t
−1


 −eu1+1

−v1eu
1+1


k

(118)

Table 4. Convergence results for the exponential function.

log(∆t) log(error) p
0 -1.01
-1 -5.28 4.27
-2 -9.27 3.99
-3 -13.26 3.99

System of Nonlinear Equations.

The next example was chosen to demonstrate the present method’s applicability

to systems of equations and compare the error estimation accuracy to other tech-

niques. This particular problem was taken from Reference [77], where it is used to

detail accuracy and error estimation for several integration techniques. For direct

comparison to the author’s presentation, the local error was calculated as follows.

For each time step (not just the first one), the initial values u0
i and v0

i were set to the

exact solution. Thus, at the conclusion of the time step, the exact local error was

precisely the difference between the model’s solution (u1
i and v1

i ) and the exact solu-

tion (yi(t
1) and ẏi(t

1)). The exact local error can then be compared to the estimate
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provided by the model. The stated error is the L2 norm of the displacement error

vector. The system consists of two nonlinear equations, with t ∈ [0, 6.4]:

ÿ1 = −y1

(
y2

1 + y2
2

)−3/2
(119)

ÿ2 = −y2

(
y2

1 + y2
2

)3/2
(120)

The initial conditions y1(0) = 1, ẏ1(0) = 0, y2(0) = 0, and ẏ2(0) = 1 provide the exact

solution y1 = cos(t) and y2 = sin(t). As with the previous example, the ODE directly

provides the acceleration constraints and the time derivative of the ODE provides the

jerk constraints to be applied at the beginning and end of the time steps (Eq. (92)

and Eq. (98), respectively). The superscript time indices are omitted for clarity.

a1 = −u1

(
u2

1 + u2
2

)−3/2
(121)

a2 = −u2

(
u2

1 + u2
2

)3/2
(122)

j1 = −v1

(
u2

1 + u2
2

)−3/2
+ 5u1 (u1v1 + u2v2)

(
u2

1 + u2
2

)−5/2
(123)

j2 = −v2

(
u2

1 + u2
2

)3/2 − u2 (u1v1 + u2v2)
(
u2

1 + u2
2

)1/2
(124)

The system was solved using the fixed-point iteration scheme (Eq. 88) with an itera-

tion stopping tolerance of 1× 10−10. The results are shown in Table 5. The present

method was more accurate than the reference’s examples by an order of magnitude

or more. The local error estimates underestimated the exact local error by an average

magnitude of 7%, 5%, and 6% for ∆t = 0.8, 0.4, and 0.2 respectively. By compar-

ison, for ∆t = 0.2, the Fehlberg (4,5) Runge-Kutta method average local error was

3.7× 10−6 and the error estimate was off by an average of 18% [77].

To check convergence rates of the method once again, the simulation was next

run without performing the exact solution reset used above for local error estimation

analysis. The errors were thus the difference between the model results and the
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Table 5. Local error E and local error estimates Eest for the system of ODEs.

∆t = 0.8 ∆t = 0.4 ∆t = 0.2
t E Eest E Eest E Eest
×104 ×104 ×106 ×106 ×108 ×108

0.8 1.83 1.65 2.79 2.61 4.41 4.14
1.6 1.44 1.52 2.64 2.57 4.36 4.13
2.4 1.48 1.53 2.72 2.59 4.40 4.14
3.2 1.83 1.63 2.85 2.63 4.45 4.15
4.0 1.81 1.64 2.77 2.61 4.41 4.14
4.8 1.42 1.51 2.64 2.57 4.36 4.13
5.6 1.50 1.53 2.73 2.59 4.40 4.14
6.4 1.85 1.64 2.86 2.63 4.45 4.15

exact solution at the final time, t = 6.4. Convergence rate calculations are shown

in Table 6. The observed rates of convergence approached four as the time steps

decreased, confirming the findings from the previous examples.

Table 6. Convergence results for the multidimensional example. The order of conver-
gence is labeled p.

∆t log(∆t) log(y1 error) p log(y2 error) p log(L2 error) p
0.8 -0.097 -2.40 – -2.76 – -2.36 –
0.4 -0.398 -3.54 3.76 -3.86 3.67 -3.49 3.74
0.2 -0.699 -4.72 3.95 -5.04 3.92 -4.68 3.94

Stiff System with Variable Step Sizes.

For the final example, a stiff system was selected to challenge the error estimation

procedure and demonstrate its effectiveness for step size control. Briefly stated, a

stiff system typically requires exceedingly small time steps to resolve with a stability-

limited explicit method, even though the solution may appear smooth. Often, both

slow and fast responses (transients) are present. Fixed-point iteration typically strug-

gles to converge [77]. Further explanation may be obtained from Refs. [3] and [49],
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which both discuss the example selected here. It features a rapid initial transient

followed by a slower response that loosely follows y = cos(t). The first-order ODE is

y′ = −100 (y − cos(t)) , t ∈ [0, π/2] (125)

from which the acceleration and jerk constraints can be formulated in terms of v and

t.

a = −100v − 100 sin(t) (126)

j = 10000v + 10000 sin(t)− 100 cos(t) (127)

The fixed-point iteration algorithm used so far in this paper required the domain

to be divided into at least 100 time steps to converge, and the accuracy was still

poor. Fortunately, the system of equations is linear with respect to velocity and the

acceleration and jerk terms can be eliminated by substitution. The time-dependent,

nonlinear forcing terms are lumped into the vector b, resulting in the system

 60
∆t3

− 24
∆t2
− 300

∆t

60
∆t3

− 36
∆t2
− 900

∆t
− 10000


 u1

v1

 = (128)

 60
∆t3

36
∆t2
− 900

∆t
+ 10000

60
∆t3

24
∆t2
− 300

∆t


 u0

v0

+
{
b(t0, t1)

}
(129)

where the forcing vector is

b(t0, t1) =


(
−900

∆t
+ 10000

)
sin(t0)− 100 cos(t0) + 300

∆t
sin(t1)

−300
∆t

sin(t0) +
(

900
∆t

+ 10000
)

sin(t1)− 100 cos(t1)

 (130)
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For each new time step, t0, t1, and ∆t are known; the coefficient matrices can be

calculated once per simulation (or per time step if ∆t is varied), and the vector

b(t0, t1) can be calculated once per time step. The resulting linear system can be

solved directly.

First, the problem was solved using fifty uniform time steps of ∆t = π/100.

The results are shown in Figure 28(a). The dots are nodal values of the present

method. The solid red line is the benchmark, a converged solution produced by

the Scientific Python (SciPy) function “scipy.integrate.odeint” [65]. The SciPy

function uses variable-order Adams and backward difference formula (BDF) routines

from the FORTRAN library “odepack” and can accommodate stiff systems. The

cumulative local error estimates are displayed as bands above and below the present

model’s solution.

The model clearly overshoots the initial level-off before following the ODE con-

tours parallel to the benchmark solution. By itself the model’s solution is misleading

– it is qualitatively correct but quantitatively inaccurate. Using the benchmark as

the truth, the global error at the last point was 0.135.

The error estimation process successfully detected the struggle of the model in

following the rapid transient and widened the error band appropriately. As the solu-

tion settled, the local error estimates decreased significantly (in other words, the error

band width did not shrink or expand as time progressed). The benchmark solution

happens to lie within the cumulative local error bands, though this may not always

be the case, and the cumulative local error bands should not be construed as global

error bounds. In the absence of the reference solution, the wide error band would

suggest to the user that the solution is not trustworthy.

Besides suggesting the solution is inaccurate, the error estimates can also be used

to vary the step sizes. To demonstrate this utility, the problem was re-run with step
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size control performed by a simple rule from Ref. [117]. Let ε be the user-defined upper

bound for the local truncation error. The local error estimate δu is obtained from

Eq. (114) and measured using the maximum norm. After a time step is completed, a

new step size is calculated using the formula

∆tnew =

(
ε

‖δu‖

)1/5

∆tprevious (131)

If the tolerance for the current step is violated, the new step size is applied to the

current step and it is re-calculated. If the tolerance is not violated, the current step

solution is accepted and the new step size is applied to the next step.

The solution with variable step sizes is shown in Figure 28(b). An error tolerance

of 0.01 was used for accepting a time step’s solution; fairly loose, but effective for

displaying the new error estimate lines on the plot. The model repeated a step only

once (the first time step) and appropriately grouped the points at the initial peak.

Only twelve steps were performed and the error was reduced from 0.135 to 0.0175.

Again, the benchmark happens to lie within the representative error bands. More

significantly, the reported errors are significantly smaller than in the first example,

signalling a more accurate solution.

A final case was run with a step size error tolerance of 10−8. The last point’s global

error was 2.17× 10−6 with about the same number of steps (52) as the constant step

size run (50). On four occasions during the simulation, the algorithm estimated the

local error to be out of tolerance, and therefore the time step was repeated with

a smaller step size. The local error estimate lines were indistinguishable from the

benchmark solution so no plot is shown.
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(a) Constant time steps (b) Variable time steps

Figure 28. Stiff system: Solution and error bands compared to the benchmark.

Summary.

This section has demonstrated the effectiveness of solving initial value problems

with quintic Hermite polynomial interpolations defined by end-point jerk constraints.

The Newmark methods were shown to be a subset of the current formulation. Com-

plete analysis was performed with the jerk constraints defined according to the gov-

erning equation. The method is superior to the second-order Newmark methods in

terms of absolute accuracy, rate of convergence, and frequency reproduction. The

conditional stability was fully characterized using a linear oscillator, and it was found

that the regions of instability existed only above the Nyquist frequency – well above

the time step sizes demanded by accuracy requirements. Nonlinear systems are readily

accommodated. The problem formulation is systematic and physically intuitive, and

can be efficiently executed in a fixed-point iteration algorithm for non-stiff systems.

The accuracy and application of the method has been emphasized, not the compu-

tational efficiency. During the course of the study and in initial testing of the nonlinear

membrane model, the Hermite interpolation method solved by the fixed-point itera-

tion algorithm has been suitably efficient. Considering the accuracy attained versus

the computational expense (both function calls and run time), it is believed that this
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method can be competitive with other time integration techniques.

Point Collocation Spatial Discretization

In this section, a novel membrane model based on the group finite element for-

mulation and point collocation method will be presented and evaluated for static

membranes. After summarizing the governing equations and the material model,

polygon interpolation formulas will be derived to calculate gradients in a staggered

grid approach. The steps for calculating nodal force imbalances will be described in

detail. After the model is explained, verification will demonstrate consistency and

an observed rate of convergence of two. Finally, predictions will be validated against

experimental results in the literature to show the model to be suitable through its

range of intended use (i.e., short of the onset of hyperelastic material response).

Governing Equations.

For this study, a membrane is defined as a thin plate without bending stiffness [63].

The governing partial differential equations (PDEs) for the nonlinear membrane are

those of a plate undergoing finite deformations as derived in [111], but with the mo-

ment and curvature terms removed. The internal stress components are Nij (second

Piola-Kirchoff, per unit length) with the subscripts denoting orientation with respect

to the Cartesian axis directions x1 and x2. The external pressure vector components

are represented by f . The terms are expressed in force per unit area.

0 =
∂N11

∂x1

+
∂N12

∂x2

+ f1 (132)

0 =
∂N22

∂x2

+
∂N12

∂x1

+ f2 (133)

0 =
∂

∂x1

(
N11

∂u3

∂x1

+N12
∂u3

∂x2

)
+

∂

∂x2

(
N22

∂u3

∂x2

+N12
∂u3

∂x1

)
+ f3 (134)
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The solution of the membrane surface displacements u begins by recovery of the

surface gradients. The gradients then lead to the components of the Green strain

tensor Eij [111, 15].

E11 =
∂u1

∂x1

+
1

2

[(
∂u1

∂x1

)2

+

(
∂u2

∂x1

)2

+

(
∂u3

∂x1

)2
]

E22 =
∂u2

∂x2

+
1

2

[(
∂u1

∂x2

)2

+

(
∂u2

∂x2

)2

+

(
∂u3

∂x2

)2
]

E12 =
1

2

[
∂u2

∂x1

+
∂u1

∂x2

+

(
∂u1

∂x1

∂u1

∂x2

)
+

(
∂u2

∂x1

∂u2

∂x2

)
+

(
∂u3

∂x1

∂u3

∂x2

)]
(135)

The internal stresses are calculated using the conventional plane stress constitutive

relationship. Prestress is accounted for by the vector N0. Note that the membrane

thickness h, where h = h(u), is a function of the displacement field to take thinning

into account as the membrane stretches.
N11

N22

N12

 =
Eh (u)

1− ν2


1 ν 0

ν 1 0

0 0 (1− ν) /2




E11

E22

2E12

+


N11

N22

N12


0

(136)

Discretization and Polygon Interpolation Formulas.

By using the group formulation, all three governing PDEs (Eq.(132), Eq.(133),

and Eq.(134)) were cast into the same first-order PDE form

∂Q1

∂x1

+
∂Q2

∂x2

+ f = 0 (137)
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where the vectors Q define the degrees of freedom as

Q1 =


N11

N12

N11
∂u3
∂x1

+N12
∂u3
∂x2

 Q2 =


N12

N22

N22
∂u3
∂x2

+N12
∂u3
∂x1

 (138)

The domain is discretized by forming a staggered mesh, meaning different variables

are evaluated at different points in the domain. For example, the displacements u and

the stresses N will not be computed at the same nodes. As commonly found in finite

difference discretizations, a staggered mesh enables more compact stencils. In certain

CFD applications, high-frequency oscillations are reduced because the pressure and

velocity fields are fully coupled [55].

The staggered mesh consists of a primary mesh of three-node linear triangles and a

dual mesh of polygons. The nodes of the primary mesh define the model’s collocation

points and carry the vectors u (displacement) and f (external force). The role of

the primary mesh is to recover the first partial derivatives of the membrane surface.

The calculated partials of each triangle are placed at the centroid, as is common in

post-processing gradient recovery procedures [28, 146, 98].

The dual mesh is formed by connecting the centroids of the triangles to form

vertex-centered polygons, also called tributary areas [146]. Note that the polygons do

not overlap and are therefore not the same as an element patch. The vertices of the

polygons carry the Q vectors. The solution of the discretized governing equations,

Eq. (137), requires an approximation of the partial derivatives of Q at the center

node. For this study, the polygon patch interpolation presented in [29] was used.

This interpolation is based on the linear interpolation along the edge between adjacent

nodes. The shape functions are rational polynomials that interpolate a linear field

exactly. For completeness, we first list a few key equations from [29], and then derive
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the necessary partial derivatives of the shape functions.

Let n be the number of vertices of the polygon and i be an index of those n sides.

To use the subscripts to indicate the pertinent node, the coordinates (x1,x2) used so

far will be renamed (x,y) in this section. Each edge segment l is described by a line

with constant coefficients a and b.

li = 1− aix− biy (139)

Each polygon will have the center node as its local origin. The coefficients a and b

are then determined by the vertex coordinates in the reference configuration.

ai =
yi − yi−1

xi−1yi − xiyi−1

bi =
xi−1 − xi

xi−1yi − xiyi−1

(140)

The line coefficients a and b and the vertex coordinates are used to calculate the

relative weight coefficients κ, which are normalized by setting κ1 to a value of one.

κi = κi−1

[
ai+1 (xi−1 − xi) + bi+1 (yi−1 − yi)
ai−1 (xi − xi−1) + bi−1 (yi − yi−1)

]
; κ1 = 1 (141)

The line equations and coefficients form the terms of ψi, the numerator of the shape

function associated with perimeter node i.

ψi(x, y) = κi

j=n∏
j 6=i
j 6=i+1

lj(x, y) (142)

The denominator polynomial is equal to the sum of all of the numerator polynomi-

als, thus forming the rational polynomial shape function Ni for each node i on the
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perimeter of the polygon.

Ni(x, y) =
ψi
n∑
j=1

ψj

(143)

Having summarized the work of [29], we now obtain the derivatives of the shape

functions for use in the present method. Application of the quotient rule leads to the

expressions for the shape function derivatives,

∂Ni

∂x
(x, y) =

(
n∑
j=1

ψj

)
∂ψi
∂x
− ψi

∂

∂x

(
n∑
j=1

ψj

)
(

n∑
j=1

ψj

)2 (144)

∂Ni

∂y
(x, y) =

(
n∑
j=1

ψj

)
∂ψi
∂y
− ψi

∂

∂y

(
n∑
j=1

ψj

)
(

n∑
j=1

ψj

)2 (145)

Each of the terms necessary for this calculation will now be simplified. Multiple

applications of the chain rule to Eq. (142) result in the expressions

∂ψi
∂x

= κi

k=n∑
k 6=i
k 6=i+1

∂lk∂x
j=n∏
j 6=i
j 6=i+1
j 6=k

lj

 (146)
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∂ψi
∂y

= κi

k=n∑
k 6=i
k 6=i+1

∂lk∂y
j=n∏
j 6=i
j 6=i+1
j 6=k

lj

 (147)

The partial derivatives of the linear edge functions are constants,

∂li
∂x

= −ai
∂li
∂y

= −bi
(148)

which when substituted into Eqs. (146) and (147) reduce them to

∂ψi
∂x

= −κi
k=n∑
k 6=i
k 6=i+1

ak
j=n∏
j 6=i
j 6=i+1
j 6=k

lj



∂ψi
∂y

= −κi
k=n∑
k 6=i
k 6=i+1

bk
j=n∏
j 6=i
j 6=i+1
j 6=k

lj


(149)

Since the local origin was placed at the center node, and the center node is the only

point at which this interpolation will be applied, all of the non-constant terms of

the derivative shape functions can be disregarded. Then the calculations for the
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individual terms of Eqs. (144) and (145) reduce to

ψi = κi (150)
n∑
j=1

ψj =
n∑
j=1

κj (151)

∂ψi
∂x

= −κi
k=n∑
k 6=i
k 6=i+1

ak (152)

∂ψi
∂y

= −κi
k=n∑
k 6=i
k 6=i+1

bk (153)

∂

∂x

(
n∑
j=1

ψj

)
=

n∑
j=1

∂ψj
∂x

(154)

∂

∂y

(
n∑
j=1

ψj

)
=

n∑
j=1

∂ψj
∂y

(155)

These formulas are substituted into Eqs. (144) and (145) to provide the derivatives of

the polygonal shape functions at the center nodes. Thus letting Qi be scalar values

at the polygon vertices i = 1...n, the partial derivatives of Q at the polygon’s center

node are

∂Q

∂x
=

n∑
i=1

∂Ni

∂x
Qi (156)

∂Q

∂y
=

n∑
i=1

∂Ni

∂y
Qi (157)

To improve computational efficiency, much like global stiffness matrices, the indi-

vidual element interpolation functions are assembled into global derivative matrices

Tα ≡ ∂/∂xα, where α = 1, 2 to indicate the direction of the partial derivative. To

distinguish between the sets of matrices, let the superscripts indicate the vector upon
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which the matrix operates (u or Q) and the location of the result (c for triangle

centroid or n for the interior node of a polygon). The derivative matrices Tuc
α recover

the linear triangle partial derivatives from the nodal displacements. The equations

for the gradients of linear triangles may be found in most introductory finite ele-

ment texts. The derivative matrices Tun
α use the polygon interpolations to recover

the partial derivatives of u at the polygon interior nodes from the displacements at

the perimeter nodes. Lastly, TQn
α use the polygon interpolations to recover the par-

tial derivatives of Q at the polygon interior nodes from the values Q at the triangle

centroids.

Residual Calculations.

The residual vector R contains the imbalance between the internal and external

forces at the nodes for an approximate solution of the governing equations, Eq. (137).

The role of the solver is to reduce the size of the residual vector to an acceptable

level with the user supplying the metric and tolerance. Using the entire domain, let

ne be the number of triangular elements, n be the total number of nodes, and nn be

the number of interior nodes. The following quantities are calculated sequentially to

return the residual vector R to the solver.

1. Partial derivatives of u at the triangle centroids using the primal mesh. Six

operations are required (partials of three u vectors in two directions) using the

two pre-calculated discrete derivative operators Tuc.

∂ui
∂xα

= Tuc
α ui α = 1, 2, i = 1, 2, 3 (158)

2. Surface unit normal vector n̂ and area ratio JA at the center nodes. The sur-

face normals at the nodes were obtained via the cross-product of two tangent
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vectors [140, 15]. The nodal partial derivatives required by the tangent vectors

can be obtained by gradient recovery techniques or by applying the polygon

interpolation equations (144) and (145) to the full element patch. The latter

technique was applied using the two pre-calculated constant matrices Tun in six

operations,

∂ui
∂xα

= Tun
α ui α = 1, 2, i = 1, 2, 3 (159)

Thus at each interior node the tangent vectors were

g1 =

{
1 +

∂u1

∂x1

,
∂u2

∂x1

,
∂u3

∂x1

}T
g2 =

{
∂u1

∂x2

, 1 +
∂u2

∂x2

,
∂u3

∂x2

}T (160)

Their cross product’s magnitude, JA, is the ratio of the deformed area to the

undeformed area. The direction provides the components of the external force

vector. The unit normal vector is

n̂ =
g1 × g2

‖g1 × g2‖
=

g1 × g2

JA
(161)

3. External force f(u) at the center nodes. Let p be the spatially-constant mag-

nitude of inflation pressure that acts normal to the membrane in its current

configuration. The external force vector is

f = p JA n̂ (162)

4. Thickness ratio Jh at the center nodes. Incompressibility is assumed for the

deformed thickness calculation. Since the volume V = Ah is constant, the
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thickness ratio Jh is the reciprocal of the area ratio.

Jh =
h

h0

=
V/A

V/A0

=
A0

A
=

1

JA
(163)

5. Q1 and Q2 at the triangle centroids using Eqs. (135), (136), and (138). The

deformed thickness h(u) in Eq. (136) will need to be replaced by Jhh0. Since

Jh will be calculated at the center node, not at the element centroids where Q

exists, the undeformed membrane thickness h0 is used for now. The membrane

thickness will be corrected in the last step, when the residual vector is calculated.

6. Partial derivatives of Q1 and Q2 at the polygons’ center nodes by applying the

two pre-calculated derivative operators TQn to the three u vectors.

∂Qβ

∂xα
= TQn

α Qβ α, β = 1, 2 (164)

7. Global residual vector R. The nodal thickness ratio Jh from Eq. (163) is now

applied to the partial derivatives of Q to calculate Rj ∈ <3, residual vector

of node j. The nodal residuals are assembled into the global residual vector

R ∈ <3nn , which is returned to the nonlinear solver for further minimization.

Rj =

(
Jh
∂Q1

∂x1

+ Jh
∂Q2

∂x2

+ f

)
j

j = 1 . . . nn (165)

In the point collocation method, the residual equations for points on the boundary

are determined by the boundary conditions and will be different from the domain

interior’s governing equation [1]. Here, for the homogeneous boundary conditions,

the displacements are simply set to zero, and the boundary nodes are removed from

the solution vector.
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Nonlinear Solver.

The dynamic simulation under development which will use this membrane model

primarily employs an accelerated fixed-point iteration algorithm. This method does

not require the construction of a Jacobian matrix (or even an approximation of one),

so significant savings in computational effort are expected. Since the Newton-Raphson

method will not be used, the tangent stiffness matrix is not needed and will not be

formulated analytically. Thus for the static cases presented here it was necessary to

find an efficient alternative method that estimates the Jacobian or avoids using it

altogether.

For this study we utilized “scipy.optimize.newton krylov”, the Newton-Krylov

nonlinear equation solver from the Python library SciPy [65]. The solver was supplied

an initial guess for u and a callable function that returned the residual vector R(u),

Eq. (165). The loose generalized minimum residual (LGMRES) method was selected

as the inner solver [6].

Broadly speaking, Newton-Krylov methods employ nested iterative solvers. The

outer solver performs corrections like the classical Newton method. The inner solver

is one of many linear Krylov subspace methods [131]. Jacobian-free Newton-Krylov

(JFNK) methods like the one used in this SciPy routine are efficient for large sys-

tems because they use a perturbation of the entire solution vector to approximate

Jacobian-vector products; this approach is more efficient than the finite difference

Jacobian construction, which requires a perturbation of each element of the solution

vector [75, 69]. The actual Jacobian is not needed, yet convergence can approach that

of the Newton method. Preconditioning by providing an approximation to the Jaco-

bian is highly recommended and often necessary for adequate performance [12, 131].

However, for the simulations in this study, performance was more than adequate

without supplying a preconditioner to the solver.
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Because stress stiffening is the source of transverse resistance, the solver will fail

when starting from a flat, slack membrane. There are several remedies for this prob-

lem. The approach used in this study was to prescribe an initially non-flat shape

([141] used this approach for a box-shaped membrane and mentioned its necessity).

Simple parabolic profiles were sufficient. A second option, dynamic relaxation, uses a

dynamic model with damping to settle to the static solution [64, 28, 140]. This option

is convenient since it is not necessary to code a separate solver for the static solution;

and it also has the benefit of verifying some aspects of the dynamics code. How-

ever, convergence can be extremely slow if the damping mechanism is not carefully

designed. Some of these challenges can be avoided by using pseudo-transient continu-

ation [40, 70]. The non-physical time step sizes can be controlled using the successive

evolution-reaction (SER) technique [75]. A third approach, also not employed herein,

entails initially applying a pretension to aid the solver and later removing it for the

final solution.

It is worth mentioning a few other numerical alternatives that may be used in the

absence of an analytical Jacobian. A more comprehensive review of these alternatives

may be found in [140]. Finite difference Jacobian approximations are easy to perform

but are not robust, and they become very expensive as the size of the problem in-

creases. Automatic differentiation extracts the derivatives directly from the code [47].

Multigrid methods [21, 52] (in particular the Full Approximation Scheme [20]), and

combinations of Newton-Krylov and multigrid methods [66, 41] require some careful

coding, but the ultimate computational efficiency gains can be impressive. Lastly,

depending upon how the method is formulated, dynamic relaxation may also be a

viable alternative.

99



Verification.

Patch tests were performed for the linear plane stress scenario [58]. All of the tests

featured a unit vertical rigid body translation. The square patch measured two units

per side and was centered at (1, 1) as shown in Figure 29. The patch contained a single

interior node at (1.6, 1.4), approximately on the perimeter of its dual-mesh polygon.

Given a linear displacement field, boundary nodes were displaced accordingly and

the displacement of the center node was checked against the exact field. Introducing

Young’s modulus E, the physical constants were set to E = 1000, h = 1, and ν = 0.5.

The results in Table 7 show that the model exactly reproduced the constant strains

and stresses, even with irregular elements.

Further verification and convergence determination was performed using the Method

Figure 29. Square 2× 2 5-node patch for the patch test. Solid lines are the triangles of
the primary mesh; dashed lines illustrate the node-centered polygon of the dual mesh.

of Manufactured Solutions [112, 23]. In this method, a solution is fabricated (it does

not have to be physically plausible), and the forcing function is calculated from the

governing PDE. Then, the forcing function is used in the numerical model to obtain an

approximate solution. The error is then the difference between the model’s solution
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Table 7. Patch test results. A star (*) indicates a non-zero magnitude of less than
10−11; strains and stresses for all four elements were reported as exact when integer
values, and exact to at least eight decimal places when fractional.

u field u(1.6,1.4) E N/h

(1,0,1) (1,0*,1) (0,0*,0*) (0*,0*,0*)
(0,1,1) (0*,1,1) (0,0*,0*) (0*,0*,0*)
(x,0,1) (1.6,0*,1) (1.5,0*,0) (2000, 1000, 0)
(0,x,1) (0*,1.6,1) (0.5,0*,0.5) (666.7,333.3,333.3)
(y,0,1) (1.4,0*,1) (0,0.5,0.5) (333.3,666.7,333.3)
(0,y,1) (0*,1.4,1) (0,1.5,0*) (1000, 2000, 0*)

and the manufactured solution. The manufactured solution, Eq. (166), was devised

in accordance with the recommended guidelines found in [115]. Non-unity constants

were chosen such that the solution magnitudes and derivatives were of approximately

the same order of magnitude in all three axes such that potential formula errors might

be revealed.

u (x1, x2) =


0.17e(x1/2−x2/2)

−0.37e(−x1/4−x2/2)

0.71e(x1+x2)

 (166)

The lengthy formulas for the corresponding anisotropic pressure vector were obtained

by substituting the manufactured solution u of Eq. (166) into Eqs. (132), (133), (134),

(135), and (136). This process was performed independently of the point collocation

code. The pressure vector formulas were generated symbolically with the Python

library SymPy [129] and inserted into the point collocation model. The Dirichlet

boundary conditions were satisfied by constraining perimeter node displacements in

accordance with the manufactured solution, Eq. (166).

To investigate the effects of discretization error, verification was performed on

two domains: a hexagon and a circle. The hexagonal domain was ideally discretized
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with a structured, symmetrical primary mesh of equilateral triangles to minimize

discretization error. The six points of the domain laid on the unit circle. The unit-

radius circular domain was discretized with asymmetrical, unstructured grids—the

same grids which will be used later in the validation phase. Three grids from each

domain are shown in Figure 30. All grids were created using the open source software

Gmsh [43], which contains a “refine by splitting” feature (elsewhere called “refine by

quartering” [74]) to easily perform structured refinement with a grid ratio of two.

For this study the representative element size of a mesh, he, was calculated as the

length of the side of an equilateral triangle, where the area of the triangle was equal

to the mean element area. The error measures εu and εE were the Euclidean norms of

the displacement error vector and the strain error vector at the origin, respectively.

The strain was recovered as the mean of the strains of the surrounding triangular

elements. Both measures were normalized by the value of the exact solution.

Figure 30. Point collocation static verification and validation meshes. Top row: Hexag-
onal grids with he = 0.5, 0.25, and 0.0625 (hex2, hex4, and hex16). Bottom row: The
three finest circular grids, used for both verification and validation (circle3, circle2, and
circle1, left-to-right).

The convergence study results are shown in Table 8 and Figure 31. The observed
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order of accuracy p converged to two for both displacement and strain in the hexag-

onal domain. The displacement errors were slightly higher for the circular grids due

to the discretization error of the unstructured grid; however, the same order of con-

vergence was observed. The strain convergence in the circular grid did not behave

as neatly because the individual strain vector components converged differently: E11

from above, E12 from below, and E22 non-monotonically. Thus the vector norm con-

verged non-monotonically. The slope of a least-squares linear fit of the four circular

grids’ strain errors provided p = 2.24, more in line with the other convergence rates.

Interestingly, the circular grids produced more accurate strain predictions than the

hexagonal grids despite the non-monotonic strain convergence behavior and lower

displacement accuracy.

Table 8. Convergence study results. The hexagonal grids are labeled with the number
of elements from the origin to the vertex at (1, 0). The circular grids are numbered
sequentially from fine to coarse.

Grid he log(he) log(εu) pu log(εE) pE

hex2 0.5 -0.30 -1.04 – -0.98 –
hex4 0.25 -0.60 -1.74 2.32 -1.75 2.56
hex8 0.125 -0.90 -2.36 2.07 -2.39 2.13
hex16 0.0625 -1.20 -2.97 2.02 -3.00 2.03
hex32 0.03125 -1.51 -3.57 2.00 -3.60 2.01
hex64 0.015625 -1.81 -4.17 2.00 -4.21 2.00
circle4 0.537 -0.27 -0.77 – -1.02 –
circle3 0.273 -0.56 -1.47 2.39 -2.93 6.50
circle2 0.137 -0.86 -2.10 2.10 -2.80 -0.42
circle1 0.069 -1.16 -2.72 2.05 -3.29 1.63

The verification process has demonstrated that the model correctly and consis-

tently solved the coded governing equations. The method’s observed order of conver-

gence of both displacement and strain was two. Also, the circular grids introduced

an acceptably small amount of discretization error and are therefore suitable for use

in the validation phase.
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Figure 31. Convergence study. The triangle displays a reference slope of two. Dashed
lines are hexagonal grid results; solid lines are circular mesh results. Grids hex2 and
circle4 from Table 8 are omitted.

Validation.

The point collocation model was validated against the experimental and finite

element model results in [125]. In that study, a latex rubber sheet was inflated from

below, and the displacement field was extracted by optically tracking a random speck-

ling pattern on the membrane surface. Strains were calculated from the displacement

field during post-processing. A geometrically nonlinear finite element model was com-

pared to another finite element approximation by [122], then validated against the

experimental data.

Two cases were selected for validation in this paper: one with and the other

without uniform prestress. In the case without prestress, model predictions were

compared directly to the experimental data. The physical constants were outer radius

R = 57.15 mm, thickness h = 0.12 mm, modulus of elasticity E = 2 MPa, and Poisson

ratio ν = 0.5.

In the prestressed case, a non-isotropic prestrain field precluded use of the ex-

perimental results. The geometrically nonlinear finite element model was therefore
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used as a benchmark for this study. The FEM model was suitable as a benchmark

because it was validated in [125] against the experimental data for the same problem

configuration (including geometry, boundary conditions, material, and load type) and

to much greater loads and deformations. The physical constants for this case were

R = 3.5 mm, h = 1.0µm, E = 71.0 GPa, and ν = 0.345. Following convention for the

Hencky problem, the lateral deflection is normalized as w/R, and the nondimensional

pressure q normalizes the inflation pressure as q = pR/Eh.

Representative grid convergence results are shown in Table 9. The format of the

presentation comes from [24], which put forth useful guidelines to standardize the re-

porting of CFD numerical study results. As explained earlier, all grid ratios are equal

to two. The symbol φ represents the magnitude of the field variable (displacement or

strain). A subscript 1, 2, or 3 indicates the results were obtained from the grid circle1,

circle2, or circle3 respectively (see Table 8 and Figure 31). The calculated order of

accuracy is p. The symbol φ32
ext indicates the value was obtained from Richardson

extrapolation using grids 2 and 3. The approximate and extrapolated relative errors

(magnitude percentage change in φ from one grid to the next finer) are shown as εa

and εext.

The convergence study confirms that the grids were sufficiently refined, as indi-

cated by the convergence of the extrapolated values φext and the small relative errors

ε. The extrapolated values φ21
ext were taken as the model solution for the remain-

ing discussions. The second-order observed accuracy from the verification phase was

maintained for both displacement and strain within the range of the model’s expected

applicability. The order of convergence of w/R deteriorated to below one for large

deformations (i.e., for w/R & 0.4).

The point collocation model predictions are compared to the experimental results

in Figure 32 and to the FEM model benchmark in Figure 33. Agreement is excellent
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Table 9. Validation convergence study for displacement (w/R) and radial strain (Er) at
the origin.

Dep. variable φ w/R w/R Er Er w/R
Prestress None None None None 250MPa
q 0.024 0.048 0.048 0.083 0.0030

φ3(coarse mesh) 0.1748 0.2223 0.0339 0.0525 0.08005
φ2(medium) 0.1739 0.2212 0.0348 0.0541 0.07983
φ1(fine) 0.1737 0.2210 0.0350 0.0546 0.07978
p 2.00 1.96 2.04 1.98 2.05
φ32
ext 0.1736 0.2209 0.0350 0.0547 0.07976
φ21
ext 0.1736 0.2209 0.0350 0.0547 0.07976
ε21
a 0.13% 0.12% 0.59% 0.76% 0.07%
ε21
ext 0.04% 0.04% 0.19% 0.26% 0.02%

with and without prestress up to w/R ≈ 0.25, beyond which the point collocation

model begins to underestimate the displacement. This behavior is in agreement with

the comparison of Mooney-Rivlin and Hookean material models in [106], so the grad-

ual loss of accuracy beyond this point may be attributed to the onset of hyperelastic

effects. The nodal strain predictions continue to match the experimental data beyond

w/R ≈ 0.45. Just as in the verification phase, the strains are actually more accurate

than the displacements. Typically the directly-calculated derived variables (strains

and stresses) converge more slowly than the displacements, though post-processing

recovery procedures may improve the accuracy [146, 98]. The staggered mesh of this

model uses constant-strain triangles, so nodal strain values must be recovered by one

of the gradient recovery procedures. Simple averaging from neighboring elements was

sufficient to produce the excellent relative accuracy of strain at the center node.

Validation against the experimental data has shown that the model is accurate

for displacements up to w/R ≈ 0.25, at which point a hyperelastic model would be

more appropriate as discussed in [125].
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Figure 32. Validation with no prestress by comparison to experimental data.
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Figure 33. Validation of the prestressed case by comparison to the FEM benchmark.
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Summary.

A membrane model intended for eventual use in dynamic aeroelastic simulations

was presented in this section, and its performance for membranes at static equilib-

rium was investigated. The model effectively combines several unconventional for-

mulations in structural engineering, including a staggered grid with robust low-order

interpolation schemes, grouped nonlinear products as degrees of freedom, and the

point collocation method. Method capabilities include variable thickness, follower

forces, and arbitrary prestress. Rigorous verification demonstrated consistency, and

the observed order of convergence was two for both displacement and strain. Dur-

ing validation with respect to a static circular membrane (the Hencky problem), the

point collocation model predictions agreed with experimental data and benchmark

FEM code until the region where hyperelastic response began to dominate.

The primary feature that distinguishes this approach is its simplicity. Element

integration is avoided entirely. The group formulation permits the same treatment

in all three axes, and the resulting code is explicit and self-documenting. Overall,

the framework of the approach is highly modular and flexible. Any given step can be

performed by interchangeable subroutines. For example, the polygon interpolation

technique could be replaced by least squares or radial basis function routines without

replacing the remaining code. The residual subroutine readily accepts different strain-

displacement or material models (including nonlinear models).

Membrane Dynamics

This section presents the model that fulfills the objectives of this research by

accurately simulating the transient response of a geometrically nonlinear membrane.

The model incorporates the new temporal and spatial discretization schemes, namely

the Hermite time interpolation method of Section IV and the point collocation method
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of Section IV.

The complete dynamic membrane model will be verified using the Method of

Manufactured Solutions. Rates of convergence will be calculated from the results.

A free-response case study will be performed using the converged results of the two

time-integration methods as the baseline solution. Throughout this section, results

of the model using the Hermite integration method will be compared to results using

the second-order Newmark trapezoid method (shortened to “the Newmark method”

from now on). Despite the disparity in the orders of the methods, the Newmark

method was chosen due to its prevalence and familiarity in the structural engineering

community. Additionally, since two different dynamic time scales were observed, a

hybrid method will be investigated that uses the Newmark trapezoid method for

in-plane dynamics and the Hermite interpolation method for out-of-plane dynamics.

The governing equations for the dynamic nonlinear membrane were derived in [111].

They are identical to those of Section IV (Eq.(132), Eq.(133), and Eq.(134)) but with

the inertial forces retained. The density ρ is in terms of mass per unit volume.

ρhü1 =
∂N11

∂x1

+
∂N12

∂x2

+ f1 (167)

ρhü2 =
∂N22

∂x2

+
∂N12

∂x1

+ f2 (168)

ρhü3 =
∂

∂x1

(
N11

∂u3

∂x1

+N12
∂u3

∂x2

)
+

∂

∂x2

(
N22

∂u3

∂x2

+N12
∂u3

∂x1

)
+ f3 (169)

Retaining from Section IV the expressions for strains and stresses, as well as

the definitions for the vectors Q, the vectorized version of the dynamic governing

equations is therefore

ρhü =
∂Q1

∂x1

+
∂Q2

∂x2

+ f (170)
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Jerk Constraints.

The jerk constraints were derived by taking the time derivative of the equilibrium

equations, Eq. 170, to obtain

j =
1

ρh

(
∂Q̇1

∂x1

+
∂Q̇2

∂x2

+ ḟ

)
(171)

The jerk constraints require formulas for the strain rates of change,

Ė11 =
∂v1

∂x1

+

(
∂u1

∂x1

∂v1

∂x1

)
+

(
∂u2

∂x1

∂v2

∂x1

)
+

(
∂u3

∂x1

∂v3

∂x1

)
(172)

Ė22 =
∂v2

∂x2

+

(
∂u1

∂x2

∂v1

∂x2

)
+

(
∂u2

∂x2

∂v2

∂x2

)
+

(
∂u3

∂x2

∂v3

∂x2

)
(173)

2Ė12 =
∂v2

∂x1

+
∂v1

∂x2

+

(
∂v1

∂x1

∂u1

∂x2

)
+

(
∂u1

∂x1

∂v1

∂x2

)
(174)

+

(
∂v2

∂x1

∂u2

∂x2

)
+

(
∂u2

∂x1

∂v2

∂x2

)
+

(
∂v3

∂x1

∂u3

∂x2

)
+

(
∂u3

∂x1

∂v3

∂x2

)
(175)

which after following the same process as described above provide the rates of change

of Q,

Q̇1 =


Ṅ11

Ṅ12

Ṅ11
∂u3
∂x1

+N11
∂v3
∂x1

+ Ṅ12
∂u3
∂x2

+N12
∂v3
∂x2

 (176)

Q̇2 =


Ṅ12

Ṅ22

Ṅ22
∂u3
∂x2

+N22
∂v3
∂x2

+ Ṅ12
∂u3
∂x1

+N12
∂v3
∂x1

 (177)

The calculation of the jerk, j, uses much of the same code as that of the acceleration, a.

The spatial discretization algorithms and data structures are utilized for both, as well
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as surface gradients. Thus, in terms of computational expense, where the calculation

of a is one function call, the work required to calculate both a and j is less than two

function calls. As detailed in Section IV, from classical analysis of a linear oscillator,

the resulting scheme is conditionally stable, frequency-preserving, non-dissipative,

and more accurate than the Newmark trapezoidal and central difference methods by

several orders of magnitude.

Verification.

Performance analysis was accomplished using the Method of Manufactured So-

lutions [112, 23]. In this procedure, a solution is fabricated (it does not have to be

physically plausible) and the forcing function is analytically derived from the govern-

ing PDE and the constitutive equations. The forcing functions, having been derived

through symbolic differentiation, are discretization-independent. When the simula-

tions are run for a discretized domain, the Dirichlet boundary conditions are set by the

manufactured solution and the derived forcing function is applied across the domain.

The error is then the difference between the model’s solution and the manufactured

solution.

The domain was defined to be a hexagon circumscribed by a circle of radius

R = 57.15 mm (the radius of the circular membrane in Ref. [125]). See Fig. 34 for a

depiction. The origin was placed at the center of the domain. This domain contained

the structured primary mesh, which consisted of equilateral triangles with side length

he = R/8.

The manufactured solution crafted for this study, Eq. (178), dictated a smooth,

111



Figure 34. Hexagonal grid for the dynamic membrane verification, showing the cir-
cumscribed circle of radius R.

curved surface by the displacement fields,

u (x, y, t) = A (t)


ex

ey/2

ex+y

 (178)

where the time-varying amplitudes were

A (t) =
R

10
(cos 500t+ 2) (179)

At the origin, the exact solutions for displacement in all three axes were precisely

A(t), so it was known a priori that any frequency content where ω 6= 500 rad/sec

was induced by model errors. The physical constants were chosen to be those of the

experimental membrane in Ref. [125]: membrane thickness h = 0.12 mm, modulus of

elasticity E = 2 MPa, density ρ = 990 kg/m3, and Poisson ratio ν = 0.5. The lengthy

formulas for the pressure vectors and their rates of change that produce the solution

of Eq. 166 were generated symbolically with the Python library SymPy [129].

A convergence study was performed to compare the Hermite interpolation method
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with physical jerk constraints from Eq. 171 to the Newmark trapezoid method, where

γ = 0.5 and β = 0.25. The simulation was run for one period of the exact solution

(T = 2π/500 s) using 20, 40, 80, and 160 time steps. First, the results with respect to

the final displacement errors at the origin will be discussed, followed by results with

respect to mean errors across all of the spatial nodes throughout the simulation.

The convergence data using the final displacements u1, u2, and u3 at the origin are

listed in Table 10 and plotted in Fig. 35, with the out-of-plane errors shown separately

from the in-plane errors. Error was normalized as a percentage of the exact solution’s

amplitude. The values shown are log10 |error|. An asterisk indicates invalid data due

to non-monotonic convergence, and “n/a” indicates lack of data due to failure of the

algorithm to converge. The rates of convergence, p, are shown for each increment

of mesh refinement. The uneven trend lines of the in-plane errors for the trapezoid

method were produced by their non-monotonic convergence. The Hermite method

improved upon the Newmark’s accuracy by three orders of magnitude for out-of-plane

errors, but the techniques were comparable for in-plane displacements. The observed

rate of convergence was approximately two for both methods.

Table 10. Dynamic nonlinear membrane verification convergence data for the final
displacements at the origin.

Trapezoid Hermite
Steps u1 u2 u3 u1 u2 u3

20 −0.60 −0.61 0.98 n/a n/a n/a
40 −2.38 −1.93 0.36 −1.98 −1.98 −2.72
80 −1.86 −1.95 −0.25 −2.52 −2.52 −3.31
160 −2.39 −2.46 −0.86 −3.06 −3.05 −4.06
p 20→ 40 5.90∗ 4.38∗ 2.06 n/a n/a n/a
p 40→ 80 −1.71∗ 0.07∗ 2.03 1.79 1.78 1.98
p 80→ 160 1.74 1.70 2.01 1.80 1.78 2.48

The convergence study results using the mean error magnitude for all spatial
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Figure 35. Dynamic nonlinear membrane convergence plots for the final displacements
at the origin.

nodes over all time steps are shown in Table 11 and plotted in Fig. 36. The error is

defined as error =
∑ |ui− ūi|/Nn(N + 1), where ū are the exact solutions, Nn is the

number of nodes in the mesh, and N is the number of time steps in the simulation.

The values shown are log10 |error|. The entry “n/a” indicates lack of data due to

failure of the algorithm to converge. The rates of convergence, p, are shown for each

increment of mesh refinement. The observed rate of convergence for both methods

was two, the same as that of the final displacement errors at the origin in Fig. 35(a).

With this metric, the accuracy of the Hermite method was approximately 1.5 orders

of magnitude better than the trapezoid method.

The reason why the Hermite method’s accuracy was significantly greater for out-

of-plane displacements than for in-plane displacements is depicted clearly in Fig. 37,

a representative illustration of the errors over time from a separate simulation using

the trapezoid method. The representative plot of normalized model errors was gener-

ated using the Newmark trapezoid method and external forcing for a manufactured

solution. It is evident that the oscillation frequency of in-plane errors significantly ex-
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Table 11. Dynamic nonlinear membrane convergence data for the mean error magni-
tudes throughout the simulation.

Steps Trapezoid Hermite
20 0.25 n/a
40 −0.35 −1.98
80 −0.96 −2.57
160 −1.56 −3.17
p 20→ 40 2.00 n/a
p 40→ 80 2.00 1.98
p 80→ 160 2.00 1.98
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Figure 36. Dynamic nonlinear membrane convergence plot of the mean error magni-
tudes for all three axes, all spatial nodes, all time steps.
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ceeded that of the out-of-plane error. A membrane is much stiffer in-plane, where the

tensile internal forces respond linearly with displacement. In contrast, the resistance

to out-of-plane motion is zero for a flat membrane, and stress-stiffening occurs with

ever greater transverse deformation. Thus the present system has two time scales for

an integrator to deal with. The Hermite method’s accuracy can be fully realized for

the slow signal, where it significantly outperforms the trapezoid method. However,

the fast in-plane response can produce oscillatory results or cause the conditionally

stable Hermite method to diverge prior to run completion as the time step increases,

and in fact the solution did not converge for the time step size ∆t/T = 0.05. (Note

that the period T in this calculation is the period of the manufactured solution, not

of the numerical solution’s oscillations as depicted in Fig. 37.)
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Figure 37. Illustration of the nonlinear membrane’s two time scales: rapid in-plane
responses (u1 and u2), and slower out-of-plane dynamics (u3).

Following these observations, a hybrid technique was explored to capitalize on

the strengths of both the Newmark and the Hermite methods: the unconditional

stability of the trapezoid method for the rapidly changing in-plane displacements,

and the significantly improved accuracy of the Hermite method for the slower out-of-

plane dynamics. It was proved in Section IV that the Newmark could be obtained
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by setting the jerk constraints appropriately. Therefore, coding was straight-forward

to utilize the different jerk constraints for in-plane versus out-of-plane equations of

motion.

The results of the previous convergence studies are now presented again, but with

the hybrid method included for comparison. The convergence data using the final

displacements at the origin are listed in Table 12 and plotted in Fig. 38 (with data

carried forward from Table 10 and Fig. 35). The convergence study results using the

mean error magnitude for all spatial nodes over all time steps are shown in Table 13

and plotted in Fig. 39 (with data carried forward from Table 11 and Fig. 36).

As expected, the convergence data show that the hybrid method effectively com-

bined the strengths of the Hermite and Newmark methods. In-plane errors were

comparable to the pure trapezoid method, but the out-of-plane accuracy was bet-

ter than the trapezoid method by two orders of magnitude as shown in Fig. 38(a).

Using the mean error norm, the hybrid method errors were an order of magnitude

smaller than those of the trapezoid method. In addition, as far as the improving sta-

bility, the hybrid method successfully completed the simulation with time step size

∆t/T = 0.05, where the purely Hermite method failed.

Table 12. Dynamic nonlinear membrane verification convergence data for the final
displacements at the origin, including the hybrid method.

Trapezoid Hermite Hybrid
Time Steps u1 u2 u3 u1 u2 u3 u1 u2 u3

20 −0.60 −0.61 0.98 n/a n/a n/a −0.55 −0.56 −0.88
40 −2.38 −1.93 0.36 −1.98 −1.98 −2.72 −1.06 −1.04 −1.53
80 −1.86 −1.95 −0.25 −2.52 −2.52 −3.31 −1.90 −1.86 −2.18
160 −2.39 −2.46 −0.86 −3.06 −3.05 −4.06 −2.55 −2.51 −2.80
p 20→ 40 5.90∗ 4.38∗ 2.06 n/a n/a n/a 1.68 1.60 2.16
p 40→ 80 −1.71∗ 0.07∗ 2.03 1.79 1.78 1.98 2.79 2.74 2.15
p 80→ 160 1.74 1.70 2.01 1.80 1.78 2.48 2.17 2.16 2.06
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Figure 38. Dynamic nonlinear membrane convergence plots for the final displacements
at the origin, including the hybrid method.

Table 13. Dynamic nonlinear membrane convergence data for the mean error magni-
tudes throughout the simulation, including the hybrid method.

Time Steps Trapezoid Hermite Hybrid
20 0.25 n/a −0.84
40 −0.35 −1.98 −1.43
80 −0.96 −2.57 −2.04
160 −1.56 −3.17 −2.65
p 20→ 40 2.00 n/a 1.97
p 40→ 80 2.00 1.98 2.01
p 80→ 160 2.00 1.98 2.05
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Figure 39. Dynamic nonlinear membrane convergence plot of the mean error magni-
tudes for all three axes, all spatial nodes, all time steps, including the hybrid method.

Free Response Analysis.

A case study of the undamped free response of a membrane was performed to

challenge the model with a rapid initial transient and wide range of response frequen-

cies. The initial at-rest configuration was a smooth peak slightly off the center of a

square membrane (see Eq. 180 and Fig. 40(a)), designed to introduce traveling waves.

Initial in-plane displacements were zero.

u3(x1, x2) = 0.02 [cosh 120(x1 + 0.015) cosh 120(x2 + 0.015)]−1 (180)

The domain’s sides were 0.1 meters in length. The unstructured mesh consisted of

700 nodes and 1318 triangular elements, resulting in a representative element size of

he = 4.19 mm (calculated as the length of a side of an equilateral triangle with an

area equal to the mesh’s mean element area). The same physical constants used in

the earlier model verification were retained.

The simulation was performed using the Newmark trapezoid integration method
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Figure 40. Time slices of the free response of a nonlinear membrane.
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and the Hermite interpolation method at time steps corresponding to CFL num-

bers repeatedly halved from 0.8 to 0.025, where the Courant-Friedrich-Levy number

CFL = c∆t/he, and the wave speed c =
√
E/ρ ≈ 45 m/s. Normalization by use

of the CFL number is for intuitive clarity only, since both methods are implicit and

therefore technically immune to CFL-driven stability restrictions [79]. The duration

of the simulation was 80 time steps with CFL = 0.8. For convenience when compar-

ing time series with different time increments, we will refer to these 81 time slices as

the “reference times.”

The remaining discussion will focus on the out-of-plane response u3 of the primary

mesh node nearest the original peak at (−0.015,−0.015). Since an analytical solution

or a proper benchmark solution is not available, a baseline was derived to approximate

the true solution. Richardson extrapolation was used to predict the solution at the

reference times for each method based on simulations using CFL = 0.05 (1,280 time

steps) and CFL = 0.025 (2,560 time steps). The nearly-coincident extrapolated

solutions for the two methods are depicted in Fig. 41. They are essentially converged,

as illustrated by plotting the difference in displacement between the two extrapolated

solutions in Fig. 42. The largest difference was on the order of 1.0×10−6 m, sufficiently

small when considering the initial peak’s height of 0.02 m. To avoid biasing the

results in favor of either technique, the baseline for the following discussion was then

calculated as the mean of the two method’s extrapolated solutions.

As expected from previous results, the Hermite method’s solutions remained closer

to the baseline as the time increment was increased. Figure 43 compares the two

methods at CFL = 0.8. The dashed line of the Hermite method overlies the baseline

for much of the simulation. The dispersion of the Newmark method is visible as the

solution progressively lags the baseline. A convergence study was performed using

the L2 norms of the errors at the reference times, and the results are plotted in
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Figure 41. Converged extrapolated solutions for the Hermite and Newmark trapezoidal
methods.
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Figure 42. Difference in displacement between the extrapolated solutions of the Her-
mite and Newmark trapezoidal methods.

122



Fig. 44. The observed convergence rates of the two methods between the two finest

time meshes were 2.06 for the Hermite method and 1.99 for the Newmark method.

Thus the results of this case study corroborate those of the verification procedure:

the observed rates of convergence of both methods are two, but the Hermite method

produces significantly smaller errors.
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Figure 43. Comparison of the model solutions at CFL = 0.8 to the baseline solution.
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Figure 44. Convergence plots of the dynamic nonlinear membrane.

At the time step sizes presented here, the conditional stability of the Hermite

method was not a factor. Performance of both time-marching methods began to
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suffer significantly at larger time increments – the cost of each time step increased

dramatically while accuracy deteriorated. The increased cost was attributed to the

decreased accuracy of the initial guesses. The nonlinear solver required more itera-

tions to converge, and convergence became less assured. In our experience the best

combination of computational speed and solution accuracy was achieved using the

Hermite method with smaller time steps, where the fixed-point iterations converged

rapidly. A more rigorous cost comparison would be required to quantify the differ-

ences between the two methods and determine optimal time step sizes.

Summary.

This section presented the performance of a dynamic model for geometrically

nonlinear membranes. The model incorporated the two previously proposed dis-

cretization methods: a jerk constraint-based Hermite time interpolation method, and

a staggered-grid point collocation method with grouped nonlinear terms. The Her-

mite method used the physical meaning of the rate of change of acceleration of the

structure to define the jerk constraints. The Newmark trapezoid method was selected

for comparison because it is well understood and is the generally accepted standard

for structural engineering. The hybrid method was evaluated during verification and

found to fill the middle ground between the Newmark and Hermite methods – it

enabled larger time step sizes than the pure Hermite method, and the accuracy for

out-of-plane displacements was better than the pure Newmark scheme. Two evalua-

tion cases were performed, one forced and one free, by changing time increment sizes

for a given mesh. First, the Method of Manufactured Solutions was employed on a

hexagonal domain to verify the code and calculate rates of convergence. Second, a

free-response case study was evaluated on a square domain. The nearly-converged ex-

trapolated solutions of the two time-marching methods were used to create a baseline
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solution. The results generally confirmed the behavior of the Hermite time method:

minimal frequency distortion and improved accuracy versus the Newmark method.

In a notable exception, the observed rate of convergence for the Hermite method fell

from four in previous evaluations to two for this membrane model. This rate was

observed across both evaluation cases and despite different norms. Overall, for this

particular application, the combination of the two proposed discretization schemes

was feasible and suitable for obtaining significantly-improved accuracy.
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V. Conclusions

The objective of this research was to devise and evaluate novel discretization

schemes for the dynamic simulation of membranes. The study was divided into two

primary focus areas: (1) linear membranes, and (2) geometrically nonlinear mem-

branes, as defined in Chapter II. Different techniques were developed and tested for

the two cases. Throughout this study, the Newmark trapezoid method was selected

for comparison because it is well understood and is the generally accepted standard

for structural engineering. In this final chapter, the research will be summarized

and discussed, contributions will be stated, and avenues for future research will be

suggested.

Linear Membrane Dynamics

The Simultaneous Time-Continuous Galerkin (STCG) method was applied to a

classical linear membrane model. The method featured trilinear space-time elements

and a mixed formulation. The entire space-time domain was discretized, and the sim-

ulation’s entire solution was obtained by solving the single large, sparse, linear system.

Numerical studies indicated observed second-order rates of convergence in both space

and time, which is typical of linear elements. Bounded numerical instabilities in the

form of high-frequency oscillations were present. However, the lower modes were ac-

curately represented, so a post-solution smoothing procedure was demonstrated that

effectively eliminated high-frequency oscillations. Unique to this method, when the

time steps exceeded a critical frequency, the solution rapidly collapsed to its resting

configuration.

The spurious modes were likely caused by the combination of interpolations used

for discretizing the mixed form. As discussed in [146], mixed forms require appropriate
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matching of interpolations to satisfy stability conditions. Fortunately, for the scheme

presented here, the spurious oscillations were bounded and not destructive to the

lower-frequency modes. Post-solution filtering removed much of the unwanted content

with slight dissipation of the peaks of the lower modes.

Nonlinear Membrane Dynamics

The dynamic nonlinear membrane model was composed of two independently de-

veloped schemes: a jerk constraint-based Hermite time interpolation method detailed

in Section IV, and a staggered-grid point collocation method with grouped nonlin-

ear terms described in Section IV. Each scheme was rigorously verified and validated

through the use of cases with known analytical solutions, manufactured solutions, and

experimental data. Finally, the two schemes were combined to form a pure collocation

model, which was analyzed in Section IV.

The Hermite method used the physical meaning of the rate of change of accel-

eration to define the jerk constraints and the resulting unique quintic polynomial

interpolation of displacement during a time step. The single-step, implicit scheme

was shown to be significantly more accurate than the most common second-order

Newmark schemes (central difference and trapezoid). It was proved that the New-

mark scheme is a subset of the proposed scheme, and is obtained by appropriately

defining the jerk constraints. It was also proved that the scheme is symplectic for a

simple harmonic oscillator. Period elongation was derived analytically for a simple

harmonic oscillator and shown to be minimal. Through a classical linear analysis, the

scheme was found to be conditionally stable, and the limits of stability were analyti-

cally derived. The regions of instability were found to be above the Nyquist frequency.

The method is not suitable for mathematically stiff systems. However, a novel error

estimation scheme was developed which, when used to control time step sizes, enabled
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the method to successfully solve a stiff system in a numerical demonstration.

The Hermite time interpolation method shows promise for general application to

differential equations, as shown by the variety of numerical examples. The method

proposed in this paper provides a unique avenue of investigation. Since jerk is not

continuous across time steps, the jerk constraints can be modified or optimized sepa-

rately for each time step or degree of freedom to achieve other desired effects such as

algorithmic damping or explicit energy conservation. This feature was illustrated by

the hybrid method of Section IV, where the jerk constraints were defined differently

in-plane versus out-of-plane.

The proposed spatial discretization scheme accounts for both in-plane and out-

of-plane displacements without carrying rotational degrees of freedom. Based on

the Method of Weighted Residuals point collocation approach, it employs a staggered

grid, grouping of nonlinear terms, and polygon shape functions in a strong-form point

collocation formulation. Additional demonstrated capabilities include varying mem-

brane thickness and follower forces, as demonstrated in Section IV. The observed rate

of convergence was two for both displacement and strain. Validation against exper-

imental data in the literature showed the method to be accurate until hyperelastic

effects begin to appear.

The point collocation scheme is simpler to formulate than conventional nonlin-

ear finite element approaches. Element integration is avoided entirely, a significant

benefit since with classical Newton iterations, each integration point (with at least

three Gaussian integration points per triangular element) must be computed for each

iteration of each time step. The group formulation permits the same treatment in

all three axes, again simplifying coding. Overall, the framework of the approach is

highly modular and flexible. Any given step can be performed by interchangeable

subroutines. The residual subroutine readily accepts different strain-displacement or
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material models (including nonlinear models).

Lastly, the Hermite time interpolation method and the point collocation spatial

scheme were combined to create a novel dynamic membrane model based purely on

collocation techniques. Two evaluation cases were considered, one forced and one

free. Convergence studies were performed to observe the convergence rates with re-

spect to time step size. First, the Method of Manufactured Solutions was employed

on a hexagonal domain to verify the code and calculate rates of convergence. Sec-

ond, a free-response case study was performed to evaluate the model’s ability to

capture traveling wave phenomena. The converged extrapolated solutions of the two

time-marching methods (Hermite and Newmark trapezoid methods) were averaged to

create a baseline solution. Time step sizes were then increased to observe how rapidly

the solutions from the two methods deviated from the baseline solution. The results

generally confirmed the behavior of the Hermite time method observed in Section IV:

minimal frequency distortion and improved accuracy versus the Newmark method.

It was notable that the observed rate of convergence for the Hermite method fell

from four in the evaluations discussed in Section IV to two for the dynamic mem-

brane simulation discussed in Section IV. Overall, for this particular application, the

combination of the two proposed discretization schemes was feasible and suitable for

obtaining significantly-improved accuracy.

Contributions

This research effort involved the assessment of a wide variety of numerical meth-

ods for use in membrane simulation, and ultimately culminated in a novel, fully

three-dimensional, highly modular membrane model that accurately and efficiently

simulates the dynamics of geometrically nonlinear membranes. It extends, rigorously

investigates, and incorporates specific techniques that are not typically used in struc-
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tural dynamics. The process of developing and evaluating this model has led to the

following specific contributions:

1. Hermite time interpolation method

• First formulation by strongly enforcing jerk constraints. This approach

offers the potential for future optimization by the selection of different

constraint formulas.

• First direct link proven between the jerk constraint-based Hermite inter-

polation method and the Newmark family of methods.

• First precise analytical expression for the linear stability limits.

• First precise analytical expression for dissipation of a simple harmonic

oscillator.

• First local error estimation technique for a Hermite time interpolation. The

accurate local error estimation capitalized on the intra-element solution

accuracy by using mid-time-step solutions to estimate error.

• First solution of a stiff system. The local error estimation technique ef-

fectively controlled time step size to accurately solve a numerically stiff

system.

2. Point collocation model

• First derivation and application of spatial derivatives of the polygon shape

functions proposed in [29].

• First use of the group finite element method in a point collocation model.

• First use of a staggered two-dimensional grid approach for nonlinear PDE

solution.
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3. Geometrically nonlinear membrane model

• First to incorporate Hermite time interpolation

• First to incorporate a staggered-grid point collocation spatial discretization

Each of the proposed discretization schemes stands on its own as an effective

numerical method for solving nonlinear ordinary or partial differential equations.

Therefore, the contributions of this study extend well beyond Micro Air Vehicles,

membranes, and structural analysis.

Recommendations for Future Work

Further investigation of the STCG concept should start with determining the pre-

cise source of the high-frequency noise and mitigating it intrinsically, so post-solution

filtering is not necessary. As discussed in Section III, the results of the static verifi-

cation indicated a mild instability in the mixed-form solution. Using a displacement

formulation rather than a mixed formulation in space could test this source of oscilla-

tions, as well as reduce the number of degrees of freedom for the global system. After

addressing the high-frequency noise, the temporal stability behavior should be ana-

lytically derived. In particular, eigenvalue analysis may explain the tendency of the

solution to collapse when the time step size exceeds a certain threshold. Finally, the

computational efficiency could be compared to reference schemes such as the linear

Newmark and explicit Runge Kutta methods.

Future studies of the Hermite interpolation method can address the following three

issues: (1) stability, (2) numerical damping, and (3) computational efficiency. Since

only linear stability has been addressed in this research, nonlinear stability behavior

could be characterized. The conditional stability of the method is a significant draw-

back for some applications. Efforts to expand the stability regimes, both intrinsically
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and using feedback controls, could increase the utility of the method. A component

of stability is the numerical damping of high-frequency content. The excellent energy

preservation is a useful feature of the method; however, the use of a non-dissipative

algorithm for a hyperbolic problem raises the spectre of error propagation and build-

up, which can cause a solution to fail. There will likely arise a trade-off between

accuracy and damping effectiveness, though by the time the damping is needed, the

local solution may have already departed significantly from the exact solution.

For the point collocation spatial discretization scheme of Section IV, further ef-

forts could investigate the sensitivity of the solution to mesh geometry, in particular

through analytical a priori error estimates and determination of the scheme’s order of

accuracy. Also, the order of the method could be derived analytically so the a priori

estimate could be verified by the numerical convergence studies. Free edge boundary

conditions for the strong form formulation could potentially be difficult to formulate,

so a parallel development of the overall concept (staggered grid with a group FE

formulation) from the weak form would probably illuminate a practical path of pur-

suit. The computational expense of using the proposed scheme with a Jacobian-free

nonlinear solver could be compared to a classical linearized finite element formulation

using Newton iterations. Finally, application of the method to other systems such

as hyperelastic membranes and thin plates offers many interesting opportunities for

future work.
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